Go

* A new open source language

* A concurrent garbage
collected language

* Builds large programs fast.

Not owned by Google.




“Go compilers produce fast code fast.

Typical builds take a fraction of a second yet the

resulting programs run nearly as quickly as
comparable C or C++ code.”




“Go Is type safe and memory safe.

Go has pointers but no pointer arithmetic.

For random access, use slices, which know their

limits.”




Go ~ Concurrent

“Do not communicate by sharing memory.
Instead, share memory by communicating.”

“Go promotes writing systems and servers as sets of
lightweight communicating processes, called
goroutines, with strong support from the language.
Run thousands of goroutines if you want—and say

good-bye to stack overflows.”




Go ~ Open Source

BSD licence code
Creative commons attribution documentation

Majority of committers are outside Google




“Go has fast builds, clean syntax, garbage collection,

methods for any type, and run-time reflection.

It feels like a dynamic language but has the speed

and safety of a static language.

V4

It's a joy to use.




Go ~ Deeper

Interfaces ~ pure classless duck-typing
Reflection ~ strong static types
Higher-order functions & closures

Concurrency ~ CSP

i
Genenes




Go ~ Example 1

Hello world

Packages

Imports

Main entry point
package main UTF8 encoding

import "fmt"

func main() {
fmt.Println("Hello,

}



http://tour.golang.org/#1

Go ~ Interfaces

. Atype implements an interface by defining the required
methods.

(there is no Point 2)

- Example: Printing Stringers

 Docs: fmt.Stringer



http://play.golang.org/p/O5xwrxfDZi
http://golang.org/pkg/fmt/#Stringer

Go ~ Interfaces 2

« Eg. http://golang.org/pkg/time/#Weekday
« Eg. http://play.golang.org/p/FBIEp600XP
« No'lmplements' declarations

- These types don't declare that they implement
fmt.Stringer

- They just do, simply by declaring a
String() string
method.

* Go Iinterfaces are simple, lightweight entities.
- Very little coupling
- Can be added later



http://golang.org/pkg/time/#Weekday
http://play.golang.org/p/FBIEp6OoXP

Go ~ 10 Writer

Writing bytes: io.\Writer
type Writer interface {

Write(p []byte) (n 1int, err error)
}

Example: os.Stdout
Example: 32bit CRC

Example: using MultiWriter



http://golang.org/pkg/io/#Writer
http://play.golang.org/p/0TF6uGGOQO
http://play.golang.org/p/GXx12Dtp2v
http://play.golang.org/p/TV6vHaumIX

Go ~ 10 Reader

Reading bytes: io.Reader
type Reader interface {

Read(p []byte) (n int, err error)
}

os.Flle
bufio.Reader
net.Conn

Compress/gzip, cryptoftls, ...
bytes.Buffer



http://golang.org/pkg/io/#Reader

Go ~ Reflection

Type information & basic operations are available at runtime
A little goes a long way

- Only needed in one or two key places

Example — implementation of Printf as ordinary Go code
Lots of flexibility, e.g for JSON and XML processing

- Step 1: printing a struct

- Step 2: JISON and XML marshalling

- Step 3: generalisation with higher-order function

e note Lang didn't need anything clever to map it
to JSON or XML

 JSON and XML marshalling libs contain some reflection code



http://play.golang.org/p/1jsGKQIuEZ
http://play.golang.org/p/M8OTZebdRH
http://play.golang.org/p/lAqUr-75Gc
http://play.golang.org/p/p_aItI-kOc

Go ~ Web Crawl

 Example: toy web crawler
counting webpage bytes (ex16webcrawli)
Python 20806 [2.955S]
Ruby 10330 [1.94s]
Scala 46318 [0.71s]

Go 6400 [0.42s]
6.01s total

e But we could make these requests in parallel and speed
it all up...




Go ~ Concurrency

 Parallelism

- Running multiple things at the same time

e Concurrency

- A way to deal with multiple things simultaneously
- The coordination of parallel computations

* Go provides both but the emphasis is on concurrency




Go ~ Concurrency

e Goroutines let you run multiple computations
simultaneously

e Channels let you coordinate the computations, by
explicit communication.




Go ~ Concurrent Web Crawl

Step 1: toy web crawler with goroutines ... and a rubbish sleep at
the end (ex1iwebcrawl2)

Step 2: add some channels. No delays needed — Nice!
(ex12webcrawl3)

Step 3: what if we want to give up after n seconds?
Simple: use a timeout with a select (aka. 'alternative' in CSP speak)

(ex13webcrawl4)
No callbacks
No condition variables, mutexes, semaphores

although they exist under the hood in the runtime
What you see is what you get — simple!




Go ~ closing remarks

Go ~ a fast, fun and productive language

V1.1.2 released Aug 2013

Choice of two compilers coordinated by spec
Medium-sized community of open-source add-on apis
Eclipse & Intellid plugins (‘Goclipse' is currently better)
Testing, debugging, profiling tools

— quite usable but not very snazzy yet.

See A Tour of Go, Russ Cox (the basis of this talk)
Start here:

- http://tour.golang.org/
- http://golang.org/doc/effective_go.html
- https://bitbucket.org/rickb777/go-talk



http://www.youtube.com/watch?v=ytEkHepK08c#!
http://tour.golang.org/
http://golang.org/doc/effective_go.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

