

Go

* A new open source language

* A concurrent garbage
collected language

* Builds large programs fast.

Not owned by Google.

Go ~ Fast

“Go compilers produce fast code fast.

Typical builds take a fraction of a second yet the

resulting programs run nearly as quickly as

comparable C or C++ code.”

Go ~ Safe

“Go is type safe and memory safe.

Go has pointers but no pointer arithmetic.

For random access, use slices, which know their

limits.”

Go ~ Concurrent

“Do not communicate by sharing memory.

Instead, share memory by communicating.”

~

“Go promotes writing systems and servers as sets of

lightweight communicating processes, called

goroutines, with strong support from the language.

Run thousands of goroutines if you want—and say

good-bye to stack overflows.”

Go ~ Open Source

BSD licence code

Creative commons attribution documentation

Majority of committers are outside Google

Go ~ Fun

“Go has fast builds, clean syntax, garbage collection,

methods for any type, and run-time reflection.

It feels like a dynamic language but has the speed

and safety of a static language.

It's a joy to use. ”

Go ~ Deeper

✔ Interfaces ~ pure classless duck-typing

✔ Reflection ~ strong static types

✔ Higher-order functions & closures

✔ Concurrency ~ CSP

✗ Immutability

✗ Generics

Go ~ Example 1

● Hello world

● Packages

● Imports

● Main entry point

● UTF8 encodingpackage main

import "fmt"

func main() {

 fmt.Println("Hello, 世界 ")
}

http://tour.golang.org/#1

Go ~ Interfaces

1 A type implements an interface by defining the required
methods.

2 (there is no Point 2)

● Example: Printing Stringers

● Docs: fmt.Stringer

http://play.golang.org/p/O5xwrxfDZi
http://golang.org/pkg/fmt/#Stringer

Go ~ Interfaces 2

● Eg. http://golang.org/pkg/time/#Weekday

● Eg. http://play.golang.org/p/FBIEp6OoXP

● No 'implements' declarations

– These types don't declare that they implement
fmt.Stringer

– They just do, simply by declaring a
String() string
method.

● Go interfaces are simple, lightweight entities.

– Very little coupling

– Can be added later

http://golang.org/pkg/time/#Weekday
http://play.golang.org/p/FBIEp6OoXP

Go ~ IO Writer

● Writing bytes: io.Writer
type Writer interface {
 Write(p []byte) (n int, err error)
}

● Example: os.Stdout

● Example: 32bit CRC

● Example: using MultiWriter

http://golang.org/pkg/io/#Writer
http://play.golang.org/p/0TF6uGGOQO
http://play.golang.org/p/GXx12Dtp2v
http://play.golang.org/p/TV6vHaumIX

Go ~ IO Reader

● Reading bytes: io.Reader
type Reader interface {
 Read(p []byte) (n int, err error)
}

● os.File

● bufio.Reader

● net.Conn

● Compress/gzip, crypto/tls, …

● bytes.Buffer

http://golang.org/pkg/io/#Reader

Go ~ Reflection

● Type information & basic operations are available at runtime

● A little goes a long way

– Only needed in one or two key places
● Example – implementation of Printf as ordinary Go code

● Lots of flexibility, e.g for JSON and XML processing

– Step 1: printing a struct

– Step 2: JSON and XML marshalling

– Step 3: generalisation with higher-order function
● note Lang didn't need anything clever to map it

to JSON or XML
● JSON and XML marshalling libs contain some reflection code

http://play.golang.org/p/1jsGKQIuEZ
http://play.golang.org/p/M8OTZebdRH
http://play.golang.org/p/lAqUr-75Gc
http://play.golang.org/p/p_aItI-kOc

Go ~ Web Crawl

● Example: toy web crawler
counting webpage bytes (ex10webcrawl1)
Python 20806 [2.95s]
Ruby 10330 [1.94s]
Scala 46318 [0.71s]
Go 6400 [0.42s]
6.01s total

● But we could make these requests in parallel and speed
it all up...

Go ~ Concurrency

● Parallelism

– Running multiple things at the same time

● Concurrency

– A way to deal with multiple things simultaneously

– The coordination of parallel computations

● Go provides both but the emphasis is on concurrency

Go ~ Concurrency

● Goroutines let you run multiple computations
simultaneously

● Channels let you coordinate the computations, by
explicit communication.

Go ~ Concurrent Web Crawl

● Step 1: toy web crawler with goroutines … and a rubbish sleep at
the end (ex11webcrawl2)

● Step 2: add some channels. No delays needed – Nice!
(ex12webcrawl3)

● Step 3: what if we want to give up after n seconds?
Simple: use a timeout with a select (aka. 'alternative' in CSP speak)
(ex13webcrawl4)

✔ No callbacks

✔ No condition variables, mutexes, semaphores

• although they exist under the hood in the runtime
✔ What you see is what you get – simple!

Go ~ closing remarks

● Go ~ a fast, fun and productive language

● V1.1.2 released Aug 2013

● Choice of two compilers coordinated by spec

● Medium-sized community of open-source add-on apis

● Eclipse & IntelliJ plugins ('Goclipse' is currently better)

● Testing, debugging, profiling tools

– quite usable but not very snazzy yet.
● See A Tour of Go, Russ Cox (the basis of this talk)

● Start here:

– http://tour.golang.org/

– http://golang.org/doc/effective_go.html

– https://bitbucket.org/rickb777/go-talk

http://www.youtube.com/watch?v=ytEkHepK08c#!
http://tour.golang.org/
http://golang.org/doc/effective_go.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

