
Santa Claus: Formal Analysis of a Process-Oriented
Solution

PETER H. WELCH

University of Kent, Canterbury

and

JAN B. PEDERSEN

University of Nevada, Las Vegas

With the commercial development of multicore processors, the challenges of writing multi-threaded
programs to take advantage of these new hardware architectures are becoming more and more
pertinent. Concurrent programming is necessary to achieve the performance that the hardware
offers. Traditional approaches present concurrency as an advanced topic: they have proven difficult
to use, reason about with confidence, and scale up to high levels of concurrency. This paper
reviews process oriented design, based on Hoare’s algebra of Communicating Sequential Processes
(CSP), and proposes that this approach to concurrency leads to solutions that are manageable
by novice programmers – that is, they are easy to design and maintain, that they are scalable for
complexity, obviously correct, and relatively easy to verify using formal reasoning and/or model
checkers. These solutions can be developed in conventional programming languages (through
CSP libraries) or specialised ones (such as occam-π) in a manner that directly reflects their formal
expression. Systems can be developed without needing specialist knowledge of the CSP formalism,
since the supporting mathematics is burnt into the tools and languages supporting it. We illustrate
these concepts with the Santa Claus Problem, which has been used as a challenge for concurrency
mechanisms since 1994. We consider this problem as an example control system, producing
external signals reporting changes of internal state (that model the external world). We claim our
occam-π solution is correct-by-design, but follow this up with formal verification (using the FDR
model checker for CSP) that the system is free from deadlock and livelock, that the produced
control signals obey crucial ordering constraints, and that the system has key liveness properties.

Categories and Subject Descriptors: D.1.3 [Concurrent Programming]: ; D.2.4 [Software
/ Program Verification]: Correctness Proof; D.2.11 [Software Architectures]: Languages;
D.3.2 [Language Classification]: Concurrent, Distributed, and Parallel Languages; D.3.3 [Lan-
guage Constructs and Features]: Concurrent Programming Structures; D.4.1 [Process Man-
agement]: Concurrency, Deadlocks, Multiprocessing, Scheduling, Synchronization; F.1.2 [Modes
of Computation]: Alternation and Nondeterminism, Interactive and Reactive Computation,
Parallelism and Concurrency; H.2.4 [Systems]: Concurrency

General Terms: Design, Languages, Reliability, Verification

Additional Key Words and Phrases: process orientation, concurrency, deadlock, event ordering,
liveness, verification, novice programmer, occam-pi, CSP

Peter H. Welch, School of Computing, University of Kent, Canterbury, Kent, CT2 7NF, United
Kingdom; email: P.H.Welch@kent.ac.uk; Jan B. Pedersen, School of Computer Science, Univer-
sity of Nevada Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154-4019; email:
matt@cs.unlv.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2010 ACM 0164-0925/2010/0500-0001 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

2 · P. H. Welch and J. B. Pedersen

1. INTRODUCTION

1.1 Concurrency is our Friend

In the teaching of computer science, concurrency is commonly treated as an ‘ad-
vanced’ topic – only to be approached, if at all, once students have learned and
become comfortable with sequential programming. In the practice of computer
science, concurrency is commonly engaged with only as a last resort [Muller and
Walrath 2000] – to deal with performance issues (such as response latencies in an
embedded control system or the efficient use of a parallel supercomputer).

These mindsets have been formed by painful experience over five decades. Con-
currency just causes too many surprises. In contrast with sequential logic, system
state we thought we had under one thread of control can get hit by another –
sometimes – and the result is chaos. So, we add protection in the form of locks
and, should we get this wrong, the system deadlocks ... or livelocks ... or parts of
it get starved of attention. Obviously, concurrent logic will be much harder than
sequential stuff?

No. Concurrency is fundamental to the workings of the universe. It exists at all
levels of granularity (e.g. nanoscale, human, astronomic). Complex, interesting and
useful behaviour emerges from the concurrent actions of zillions of processes, each
managing its own – and only its own – state, and synchronising and communicating
to enable and/or constrain each others’ individual behaviours.

To provide useful service to its environment, a computer system needs to reflect
that environment. That environment, being part of the natural world, is concurrent.
The computer system, for simplicity therefore, needs to be concurrent.

A default restriction of programmed logic to sequential design and implemen-
tation is unnatural. A penalty is the increasing difficulty of managing complex
behaviour. In an aerodynamically unstable airplane, we need to control both wings
and the tail fin all at the same time! Programming the necessary logic in one thread
of control is asking for trouble. Programming it as a network of Communicating
Sequential Processes directly matches the problem structure and will be (much)
easier. Richer complexity can be built through layers of network – just as in real
life. Welcome to CSP.

The above thesis has lain around for nearly thirty years, which is about the time
major ideas take to mature and be applied in computer science. Performance issues
have (wrongly) been the driving force for concurrency to date. The commercial ar-
rival of multicore processors – themselves forced on us by the laws of physics –
brings that driving force into play immediately. On a quad-core processor, sequen-
tial code cannot use more than 25% of the processing power. If we need more, there
has to be concurrently executable code - and lots of it. To be in with the chance of
keeping the cores busy with useful work, there needs to be (an order of magnitude)
more concurrency in the software than is available in the hardware – the principle
of parallel slackness first discussed by Valiant [Valiant 1990].

There is another problem here. It is a suspicion that most existing multithreaded
applications have concurrency errors. Many of these errors remain hidden because
of favourable scheduling sequences on unicore processors. On multicores, with real
parallel execution, any such errors have a greater risk of causing trouble. People
are scared – but there is no avoiding it.
ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · 3

This paper reviews and demonstrates the use of the concurrency model outlined
above and inspired by Hoare’s CSP process algebra. The good news is that there
will be no maths here. The even better news is that there are elegant and powerful
mathematical properties (e.g. compositionality) underlying the model and built into
the languages, libraries and tools supporting it – we get the benefits simply by using
them. As well as simplification in application logic, safe and efficient exploitation
of multicore processors follows automatically At least, this is true for the occam-
π multiprocessing language [Barnes and Welch 2004; Welch and Barnes 2005a;
2005b; 2008; Ritson et al. 2009; Sampson et al. 2010; Barnes et al. 2010], used in
this paper, and the JCSP [Welch 2000; Welch et al. 2007; Welch and Austin 2010]
and C++CSP [Brown and Welch 2003; Brown 2007] libraries for Java and C++.

1.2 The Santa Claus Problem

For illustration, we consider a problem first suggested by John A. Trono [Trono
1994]. This problem is known as The Santa Claus Problem. Trono’s description,
with a few added words, is as follows:

Santa repeatedly sleeps until wakened by either all of his nine reindeer
(back from their holidays) or by a group of three of his ten elves (who
have left their workbenches). If awakened by the reindeer, he harnesses
each of them to his sleigh, delivers toys with them and finally unhar-
nesses them (allowing them to go back on holiday and him to go back
to sleep). If awakened by a group of elves, he shows each of the group
into his study, consults with them on toy R&D and finally shows each
of them out (allowing them to go back to work and him to sleep). Santa
should give priority to the reindeer in the case that there is both a group
of elves and a group of reindeer waiting. Initially, the reindeer are all on
holiday, the elves are at their workbenches and Santa is asleep.

Although this problem seems simple at first, it presents challenges in concurrent
control that are typical of a wide range of computer application. Over the years,
solutions have been published demonstrating many approaches to concurrency (Sec-
tion 7.1). The first of these solutions (using semaphores [Trono 1994]) was shown to
be incorrect (by Ben-Ari et al. [Ben-Ari 1998]) and replaced by one using monitors.
The fact that the first published solution was wrong is evidence that the problem
is not, in fact, that simple.

We can imagine the changes of state in the Santa Claus system reflecting the
state of some real machine – for example, an airplane or nuclear power plant.
With the addition of output signals upon state change, the system might even be
controlling that machine. For many applications, that control will be safety critical
and verification of its safety (do no bad things) and effective functioning (do good
things) will be essential.

We extend the specification of the problem to include external reports from the
system, documenting what Santa, the elves, and the reindeer are doing as the
system evolves. We suppose that any machine it is controlling will break if those
reports occur in certain wrong orders (see Sections 5.5 and 6). We verify that none
of these can happen in our solution.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

4 · P. H. Welch and J. B. Pedersen

Concurrency tripwires such as race hazard, deadlock, livelock and process star-
vation must also, of course, be avoided. Particular safety constraints will demand
that certain state changes (and their corresponding signals) must happen in cer-
tain orders – that is, that Lamport happens-before relations [Lamport 1978] must
be enforced and verified. Liveness demands will specify that certain state changes
must happen following certain events. Building solutions to such problems that are
not only correct, but are seen to be correct, is a challenge for concurrent logic –
though not, we claim, as big as the challenge to solve it with purely serial logic.

1.3 Paper Roadmap

This paper presents a solution that is process-oriented (Section 2). Concurrent
design is expressed with process network diagrams (Figures 1-6) and directly refined
into executable occam-π code (Sections 3 and 4). occam-π is an extended version of
the classical occam [SGS-THOMSON Microelectronics Limited 1995] programming
language, incorporating dynamic network construction mechanisms (channel and
process mobility) from Milner’s π-calculus [Milner 1999]. Formal verification of a
range of correctness properties is achieved through direct mapping of the occam-
π source code to CSP and model checking using FDR [Formal Systems (Europe)
Ltd. 1998] (Sections 5 and 6). Switching between these representations (network
diagrams, occam-π code and CSP) is straightforward, allowing maintenance to be
led from any form – an example is given in Section 6.

The concurrency in our solution directly reflects the concurrency in the Santa
Claus story. This simplifies its design and implementation, rather than making
it hard. Indeed, aspects of this problem and solution have been set in formal
examination for second year computer science undergraduates (at the University of
Kent) and all passed. We claim that this design and development leads to solutions
that are ‘obviously correct’, but that backing this up with formal verification is not
hard and, probably, a good idea.

2. REVIEW OF PROCESS ORIENTED DESIGN

Process oriented design is an example of component-connector engineering. The
components are active processes and the connectors are events (their alphabets)
through which they synchronise and communicate. Key concepts are processes,
channels, barriers, networks, network hierarchies, choice, protocols and synchroni-
sation patterns. To be practical, a process oriented programming language, or a
library providing the necessary support for other languages, is essential – other-
wise, the gulf between the theory underpinning the design and its realisation in
code presents uncomfortable obstacles. Such tools must be easy to learn and use
and have reasonably efficient implementation. Fortunately, all these exist – we just
have to rise to the challenge of trying them.

2.1 Processes

A process is a self-contained self-executing unit that encapsulates private data and
algorithms. This contrasts with object oriented programming where object methods
are executed by an external caller’s thread of control. An object is passive (it does
nothing unless a method is invoked), whereas a process is active and can take the
initiative. A process has sole control over its internal resources and no control (not
ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · 5

even visibility) of the resources of another process. Interaction with other processes
happens indirectly through synchronising primitives, such as channel communica-
tion and barrier synchronisation. Crucially, a process can refuse some, or all, of
its external events – thereby blocking demands from other processes until it is in a
good state to accept them. An object cannot refuse a method invocation, no matter
its internal state.

2.2 Synchronising Channels

The simplest form of process interaction is point-to-point synchronous unidirec-
tional message passing along a zero-buffered channel. A channel has a sending end
and a receiving end, though it is possible to share these between multiple senders
or receivers. Zero-buffering means that a sender process must block if no receiver
is ready (and vice-versa). Various kinds of channel buffering (e.g. blocking or over-
writing FIFOs) can be obtained through splicing in appropriate buffer processes.

These communications differ from those in common message passing libraries for
parallel computing. For example, in MPI [Dongarra 1994] any process knowing
the process identifier of a receiving process (within one of its own communicator
groups) can send it a message. In CSP, there are named process types but individual
processes have no names. Individual processes are bound to a particular set of
events (channels, barriers, ...) that do have names. Different instances of the same
process type can, of course, be bound to different sets of events. A process sends
to a named channel and whatever process has the other end receives. A process
engaging on a named barrier blocks until whatever other processes registered for the
barrier also engage. Network connectivity is explicit and dynamic and constrained
to what the system needs. The difference is subtle but helps engineer high cohesion
within and zero coupling between processes.

Processes cannot observe or modify each others’ state, so need no locking mech-
anisms to maintain data integrity. To observe or modify such state, a process must
communicate a request to the owning process via appropriate channels. That re-
quest may be ignored by the target process (blocking the requester) until such time
as it chooses (e.g. when the request can be correctly processed). This means that
reasoning about process behaviour can always be conducted locally – a process is
in complete charge of its state.

The size of the state space of a process network is bound by the product of sizes
of the state spaces of its component processes (less those that cannot be reached
through the constraints of process synchronisation). Thus, the state space of a
process network can grow large whilst the logic of its components remains simple.
It is this gearing – a compositional semantics – that delivers the power of process
oriented design.

In contrast, threads concurrently managing shared state through locking mecha-
nisms (mutexes, semaphores or monitors) have to be secure in the face of all possible
interleavings through the shared objects. Reasoning is non-local: the logic of an
individual thread cannot be devised, or understood, on its own. This is hard.

2.3 Synchronising Barriers

Channels require two processes (the sender and receiver) to synchronise. A barrier
is an event on which many processes can be enrolled and on which all must syn-

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

6 · P. H. Welch and J. B. Pedersen

(a) a network of three processes, connected by four
internal (hidden) and three external channels.

foo

bar

m
e
r
g
e

serverserver

(b) three processes sharing the writing end
of a channel to a server process.

(c) three processes sharing the writing end of a channel
to a bank of servers sharing the reading end.

s (0)s (0) s (7)s (7)...
(d) n processes enrolled on a shared barrier (any process

synchronising must wait for all to synchronise).

...p (0) p (n-1)

Fig. 1. Process oriented design: components and connectors.

chronise together. If one process offers to synchronise on a barrier, all must offer to
synchronise for the event to happen – everyone must wait for everyone. A process
may have any number of barriers in its alphabet.

2.4 Networks

A network is simply a parallel composition of processes (which may themselves
have internal networks), connected through a set of synchronising events (channels,
barriers etc.). A network usually hides the events connecting internal components,
leaving free those to be used for external connections. A network is, therefore,
also a process. Network topologies can be constructed dynamically and may evolve
(both in shape and cardinality) in response to their environment.

2.5 Design by Pictures and Composition

Processes do not know – or need to know – with whom they are synchronising. Each
process can be viewed as a black box, whose ties to its environment is a set of events
(channels-ends, barriers, ...) – its alphabet in CSP language. The behaviour of a
process is described by the message structures allowed on its channels, the patterns
of synchronisation with which it is prepared to engage on its channels and barriers,
and any computational functions it performs. Networks of processes are simply
built by ’wiring’ them together using internal (hidden) channels and barriers. A
network is itself a process – so hierarchical structures naturally emerge.

This method of construction has an obvious visual representation, lending itself
to design through (structured) pictures – see Figure 1. This should have resonance
with hardware engineers, whose systems are physically concurrent. The discipline
ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · 7

leads to a strong notion of components (the processes) and connectors (the syn-
chronisation events), supporting concurrency, hierarchical design and code reuse.
The processes run themselves and do not share memory. Innermost processes are
sequential, require no locks, and engage in channels (i.e., external I/O operations)
and/or barriers. They are simple and familiar (except, possibly, for the barriers)
and all our skills for sequential programming remain valid.

We make use of such diagrams all the time when designing occam-π programs.
The design pictures for the Santa Claus system, for which we show an occam-π
implementation and verify some correctness properties, appear later in this paper.

2.6 Formal Verification

Being able to reason formally about a program is valuable – crucially so if the
application is safety or finance critical. Special difficulties arise with concurrently
executing processes since the state space potentially explodes. If the concurrency
formalism in which reasoning is conducted differs from the implementation primi-
tives used, the reasoning is unsafe. If translation between the implementation and
formal modelling languages is hard, maintaining coherence between the two will be
a continuous overhead as the system evolves.

This gap between implementation and verification is reduced by using languages
(or libraries) designed around formal methods for which verification tools exist.
Almost all concurrency mechanisms within occam-π have a direct representation in
CSP. FDR [Formal Systems (Europe) Ltd. 1998] is a model checker for CSP, allow-
ing formal verification of freedom from deadlock and livelock, process refinement
and equivalence – at least, for systems of finite (and sufficiently small) size. FDR
has a long and successful history of use in the analysis of complex safety-critical
systems [Schneider and Delicata 2004; Barrett 1995; Hall and Chapman 2002; Buth
et al. 1997; Buth et al. 1999; Lowe 1996; McEwan and Schneider 2007].

Translation between occam and CSP is defined, [Goldsmith et al. 1993; 1994],
and can be automated. At present, we do this by hand and this paper gives an
example. In general, state space introduced by real programs (for example, a
single 32-bit integer variable has potentially 4 giga-values) must be reduced to
small finite numbers – if the model checks are ever to terminate in acceptable
times. Automating this raises several challenges that are not the subject of this
paper. The Santa Claus system does not raise such problems and the translation
is direct, preserving both syntactic and semantic structure.

It should be noted that occam-π is not designed to be an execution engine for
CSP – that is, that translation from arbitrary CSP systems to occam-π is not always
easy or, even, possible1. Rather, occam-π is designed as a programming language
with concurrency built in as a first-class mechanism, with a semantics directly
expressed by CSP. It allows concurrency to be used with the same confidence, ease
and overheads as, say, sequential procedures (or method invocation).

3. A LANGUAGE BINDING FOR PROCESS ORIENTED DEVELOPMENT

occam-π is an imperative stateful language built around the concurrency model of
Hoare’s CSP. Compiler enforced language rules prevent unsynchronised access to

1Having said that, there is not much that cannot now be done.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

8 · P. H. Welch and J. B. Pedersen

shared resources, so that no data race hazards can happen. Strict aliasing control
enables this and provides a simple semantics for assignment.

It extends the classical occam2.1 language [SGS-THOMSON Microelectronics
Limited 1995] through the careful blending in of dynamic mechanisms from Mil-
ner’s π-calculus [Milner 1999] – for example, mobile channels, barriers and pro-
cesses [Barnes and Welch 2004; Welch and Barnes 2005a; 2005b; 2008] These mo-
bility concepts have much to offer in the modelling of the Santa Claus system, but
will be considered in a later paper.

occam-π also extends classical occam through the introduction of shared channel-
ends (modelled by CSP interleaving), barriers (corresponding to multiway CSP
events) and extended rendezvous (simply modelled by adding an event marking
the end of the rendezvous). These three mechanisms are employed to simplify the
solution presented in this paper.

The occam-π codes were developed with the KRoC [Wood and Welch 1996;
Barnes et al. 2010] compiler, run-time system and library – an open-source project
originated and hosted at the University of Kent. At present, compiled code is tar-
geted only at i86 platforms (taking full advantage of multicores). Memory overheads
(up to 32 bytes per process) and run-time costs (the low tens of nanoseconds per
synchronisation) enable millions of processes to be scheduled per processing node
and perform useful work [Ritson and Welch 2007]. An interpreted version (the
Transterpreter [Jacobsen and Jadud 2004]) is available for almost any target plat-
form, requiring a very tiny memory footprint. Two new compiler projects [Barnes
2006; Sampson 2007; Sampson et al. 2010], targeting all platforms supported by a
C compiler, are in development.

3.1 Processes, Sequential Composition and Parallel Composition

A process in occam-π is either a primitive or a composition of processes. A process,
at any level, may make local declarations. A process may use its local declarations
or anything declared globally (and not hidden) – normal block structuring rules.

It is just as easy, syntactically, to compose processes for sequential execution as
it is for parallel:

SEQ PAR

... process A ... process A

... process B ... process B

... process C ... process C

In sequential execution, each component sub-process may not start until the
previous one has terminated. They may freely share and update global variables.

In parallel execution, all components run concurrently. The construct does not
terminate until all its components have terminated. The components may only
share global variables for reading: if one sub-process changes a global, the other
sub-processes may not even look at it. These rules are statically checked and
enforced by the compiler. Note that any component may have its own locals.

3.2 Primitive Processes

There are ten forms of primitive executable process. The first is an assignment:
evaluate some expression (RHS) and assign (:=) the result to a variable (LHS).
ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · 9

Strong typing rules are enforced. Expression evaluation has no side-effects (as in a
functional language). This, together with the strict anti-aliasing enforcement (no
entity can have different names in the same scope), means that the semantics of
assignment is simple: the assigned variable is set to the assigned value and nothing
else changes2.

Five other primitive processes are: channel input and output (Section 3.3), barrier
synchronisation (Section 3.6), SKIP (which does nothing but terminate – sometimes
needed for syntactic place holding), and STOP (which does nothing – not even
terminate – and gives a concrete manifestation of deadlock, useful for semantic
reasoning and model checking). Three more are obtaining time-stamps, setting
timeouts and forking processes – but these are not used in this paper.

Finally, process abstractions may be named and parametrised:

PROC <name> (<parameters>)

... process

:

The parameters may be any type, including data (by reference or value) and
synchronisations (channel-ends and barriers). The colon above marks the end of
the declaration. A named abstraction may be invoked by its name and supplying
correctly typed arguments – which is our final syntactic form of executable. In-
voked in sequence with other processes, they may be thought of as procedures (or
methods). Invoked in parallel with other processes, they become components of
a network whose topology is determined by the synchronisation items they share.
The main system developed in this paper (Section 4.3 and Figures 2 and 6) gives
an example.

3.3 Channels, Extended Rendezvous and Sharing

Message passing happens through channel communication. Channels have a reading
end and a writing end – they are unidirectional. A channel is declared as follows:

CHAN <message-type> <name>:

The reading end of a channel is denoted by <name>? and the writing end by
<name>!. To write to a channel named c:

c ! <expression-list>

where the message type of the channel and individual expressions in the (semi-colon
separated) list must match. Channels are zero-buffered, so the writing process will
block until another process, running in parallel with it, executes a read on the other
end of the same channel:

c ? <variable-list>

Here, the message type of the channel and individual variables in the (semi-colon
separated) list must match. A reading process will block until another process,
running in parallel with it, executes a write on the other end of the same channel.

2This is not the case for most other imperative languages – such as C, Java, ...

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

10 · P. H. Welch and J. B. Pedersen

Only when (or if) both processes reach these respective synchronisation points
does the communication happen – whichever process gets there first must wait.
After the communication, both processes go their separate (concurrent) ways.

occam-π allows an extended rendezvous on channel input:

c ?? <variable>

... rendezvous process (must not use c?)

This extended input blocks until a message is pending on the c channel. For
a normal channel input (i.e., a single ?), the writing process would be released
at this point. With the above extended channel input (??), the release does not
happen until after the indented rendezvous block has been completed by the reading
process. The writing process is unaware of any such behaviour.

Either of the two ends, or both, can be shared: this is denoted by either SHARED ?
(shared reading end), SHARED ! (shared writing end) or SHARED (both ends shared)
prefixed to the channel declaration. If a channel-end is SHARED, it must be claimed
for exclusive use:

CLAIM c!

... use c! (as many times as you like)

The CLAIM will block if some other process is already holding a claim on this
channel-end. Processes wait on a FIFO queue – a different one for each end (if both
are shared). A process has exclusive use of the channel-end within the indented
block below the CLAIM. The claim is automatically released at the end of this block.

It is fairly common that a CLAIM block consists of a single line using the claimed
channel:

CLAIM c!

c ! 42

In such cases, the claim and use may be collapsed to a single line:

CLAIM c ! 42

All uses of shared channel-ends in this paper fit this pattern.

3.4 Choice

occam-π provides a simple way of waiting for one of a set of events to be offered and,
then, making a response. Should more than one of these events become available,
an arbitrary (i.e., non-deterministic) choice is made. An ALTernative construct is a
list of guarded processes:

ALT

<guard>

<process>

...

<guard>

<process>

The list order does not matter. The guards are the waited-for events – cur-
rently, only input processes (simple/extended, on offer when a message is pending),
timeouts (on offer when expired) and SKIPs (always on offer) are allowed.
ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · 11

If control of the choice is needed should more than one event be on offer, a
prioritised version (PRI ALT) version is available. This resolves the choice in favour
of the first one listed, so that the ordering of the guarded processes does matter in
this case.

Used with a SKIP as its final guard, a PRI ALT lets us poll channels for input
and get on with something else if none is available. It also gives a way to force a
process away from servicing an always-busy channel. The unfairness built in to the
PRI ALT curiously, and simply, gives a way to guarantee fairness is servicing events.
For example, a two-input multiplexor can be made fair by unrolling the loop body
twice (in SEQuence), changing both ALTs into PRI ALTs and switching the order of
the second one. A PRI ALT is also exactly suited to Santa’s duty to go with the
reindeer in case both the reindeer and a party of elves are knocking on Santa’s door.

3.5 Replicators

The SEQ, PAR and ALT constructs may be replicated. Suppose XXX is one of these
three keywords. Then:

XXX i = start FOR n

<process.which.may.use.i>

is short-hand for:

XXX

<process.with.i.replaced.by.start>

<process.with.i.replaced.by.(start + 1)>

...

<process.with.i.replaced.by.(start + (n - 1))>

The replicated SEQ corresponds to a traditional for-loop (with guaranteed ter-
mination). The replicated PAR sets up regular network topologies. In a replicated
ALT, the <process.which.may.use.i> must be a guarded process and the con-
struct waits for, and chooses between, an array of events.

3.6 Barriers

The last concept needed for this paper is the barrier. A barrier is multiway synchro-
nisation point. No process can proceed past the barrier until every process enrolled
on the barrier has reached it. The syntax for declaring and enrolling processes on
a barrier is as follows:

BARRIER <barrier-name>:

PAR ENROLL <barrier-name>

... all processes here are enrolled

Synchronising on a barrier is the last occam-π primitive we need:

SYNC <barrier-name>

4. AN OCCAM-π IMPLEMENTATION

The Santa Claus system has three kinds of component: Santa, reindeer and elf.
Their states are outlined in on-line Appendix A, along with the reports we require
them to make as they cycle through them.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

12 · P. H. Welch and J. B. Pedersen

......

santa.reindeersanta.reindeer

reindeer.2.santareindeer.2.santa

reportreport

SantaSanta

just.reindeerjust.reindeer

Reindeer (0)Reindeer (0) Reindeer (1)Reindeer (1) Reindeer (8)Reindeer (8)

Fig. 2. Santa and the reindeer.

The Santa Claus story has near symmetry. The actions performed by reindeer
and elves are much the same: they do things on their own for a while (holiday-
ing, toy development), then rendezvous with Santa (9 out of 9, 3 out of 10) and
work with him (delivering toys, consulting), then repeat. The partial nature of the
Santa-elves rendezvous, however, requires special treatment compared with the full
rendezvous between Santa and all the reindeer (which can be handled by a primi-
tive CSP/occam-π multiway event). Symmetry could be restored by declining that
primitive. Then, we would need only one type of process that could play the role
of either a reindeer or elf – and Santa’s processing of either would be the same.
However, in this presentation, we will work with separate logic and explore the
different mechanisms.

4.1 Santa and the Reindeer

Figure 2 shows Santa and the reindeer processes connected in a network of channels
and barriers.

There is a report channel, whose writing end is shared by all the processes and
through which they report their life stories. This channel is external to the system
and may be used to animate a display of what is happening inside the system. It
could also be used to control a machine whose components are modelled by the
Santa, reindeer and elf processes. It may be more appropriate to have separate
(parallel) report channels – one for each component of the system. However, the
semantics of the system are such that there is no difference between these two views.
Each component makes its reports independently, identifying itself in each report.
Those identifying tags partition the set of reports into component-unique subsets
that can be viewed as reports on separate channels. For synchronisation analysis,
all we need to know is that reports can be made at any time and will never be
blocked by the actions (or inactions) of other components within the system. We
may assume that the environment of the system will always always accept these
messages.
ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · 13

There is a just.reindeer barrier, on which the reindeer wait for each other to
return from holiday. There is a santa.reindeer barrier, on which the reindeer
wait for Santa to harness all of them before starting the sleigh run. This is also
used to wait for Santa to bring them all home after delivering toys. Finally, there is
a reindeer.2.santa channel, whose writing end is shared by the reindeer. When
all the reindeer are back from holiday, they report in to Santa (for harnessing)
by sending their names through this channel – they will, of course, be blocked at
this point if Santa is consulting with elves. The reindeer also use this channel to
synchronise with Santa so that he can unharness them after delivering toys.

Here is the reindeer process:

PROC reindeer (VAL INT id, BARRIER just.reindeer, santa.reindeer,

SHARED CHAN INT to.santa!, SHARED CHAN REINDEER.MSG report!)

WHILE TRUE

SEQ

CLAIM report ! holiday; id -- "I’m on holiday" + id

random.wait (HOLIDAY.TIME) -- sleep for random amount of time

CLAIM report ! deer.ready; id -- "I’m back from holiday" + id

SYNC just.reindeer -- wait for all deer to return

CLAIM to.santa ! id -- send id and get harnessed

SYNC santa.reindeer -- wait for others to be harnessed

CLAIM report ! deliver; id -- "I’m delivering toys" + id

SYNC santa.reindeer -- until Santa takes us all home

CLAIM report ! deer.done; id -- "I’m back from sleigh run" + id

CLAIM to.santa ! id -- get unharnessed

:

Here is the part of the header and body of the Santa process that deals with the
reindeer:

PROC santa (CHAN INT from.reindeer?, BARRIER santa.reindeer,

... elf connections

SHARED CHAN SANTA.MSG report!)

WHILE TRUE

PRI ALT -- wait for reindeer or elves

... deal with the reindeer

... deal with the elves

:

Each of the above dealing processes is prefixed by a signal indicating, respectively,
that either all N.REINDEER (9) reindeer are back from holiday or that a group of
G.ELVES (3) elves, out of N.ELVES (10), is ready to consult. The PRI ALT ensures
that if there are both reindeer and elves signalling, Santa will choose the reindeer.

Here is Santa’s code dealing with the reindeer. The wake-up signal is just the
message from one (any one) of the gathered reindeer, giving its name. This is
followed by the messages from all the other reindeer – in some arbitrary order:

{{{ deal with the reindeer

INT id:

from.reindeer ? id -- the first reindeer is here

SEQ

CLAIM report ! reindeer.ready -- "Ho, Ho, Ho, reindeer are here"

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

14 · P. H. Welch and J. B. Pedersen

CLAIM report ! harness; id -- "Harnessing reindeer " + id

SEQ i = 0 FOR N.REINDEER - 1 -- for the remaining deer

SEQ

from.reindeer ? id -- receive their id

CLAIM report ! harness; id -- "Harnessing reindeer " + id

CLAIM report ! mush.mush -- "Mush Mush"

SYNC santa.reindeer -- tell reindeer all are harnessed

random.wait (DELIVERY.TIME) -- deliver toys for some random time

CLAIM report ! woah -- "Whoa ... let’s go home"

SYNC santa.reindeer -- signal everyone to return home

SEQ i = 0 FOR N.REINDEER -- for each deer

from.reindeer ?? id -- receive their id

CLAIM report ! unharness; id -- "Unharnessing reindeer " + id

}}}

The reindeer, once they have reported to Santa for unharnessing, loop around to
announce they are on holiday again. Santa does the unharnessing and reports it,
holding each reindeer in an extended rendezvous whilst that happens. This ensures
that the unharnessing report happens before the holiday report. Note that this
is not necessary for the harnessing reports, since the reindeer wait for the whole
team to be harnessed (santa.reindeer) before their next report (that they are
delivering toys).

There are other happens-before relationships enforced by the above santa and
reindeer processes:

—all reindeer must have reported their return from holiday before Santa is woken up
to announce that the reindeer are here – enforced by the SYNC on just.reindeer
in the reindeer process;

—all reindeer must be harnessed before Santa says “Mush Mush” – enforced by
sequential code in the santa process;

—Santa says “Mush Mush” before any reindeer reports it is delivering toys – en-
forced by the first SYNC on santa.reindeer in the reindeer and santa processes;

—Santa says “Whoa” before any reindeer reports it is back from delivering toys
– enforced by the second SYNC on santa.reindeer in the reindeer and santa
processes.

Later in this paper, we show how these relationships can be formally specified and
verified.

4.2 Santa and the Elves

Neither CSP nor occam-π have primitives for the partial barrier synchronisation
required for this part of the system. So, we have to model the ideas with special
processes.

4.2.1 Partial Barriers. A partial barrier synchronises any x out of y (other)
processes, where 0 < x ≤ y. It is managed by a simple protocol, comprising two
channel communications per synchronising process to complete each partial barrier.
The first makes the offer to synchronise and the second forces it to wait for enough
offers to have been made. These communications are received and managed by a
simple process that counts down the offers and, then, accepts the release signals:
ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · 15

(b) implementation of a partial barrier (using

current occam- mechanisms).

...

p.bar (3)p.bar (3)

p (0) p (n-1)

a

b

(a) n processes enrolled on a partial barrier (any process

synchronising must wait for 2 others to synchronise).

...p (0) p (n-1)

(3)

Fig. 3. A partial barrier.

PROC p.bar (VAL INT x, CHAN BOOL a?, b?)

WHILE TRUE

SEQ

SEQ i = 0 FOR x -- gather in the right number of offers

BOOL any:

a ? any

SEQ i = 0 FOR x -- all offers received: let everyone go

BOOL any:

b ? any

:

The partial-barrier-synchronising processes plug into shared writing ends of the
channels connecting to p.bar. To synchronise, they run:

PROC sync (SHARED CHAN BOOL a!, b!)

SEQ

CLAIM a ! TRUE -- offer to synchronise

CLAIM b ! TRUE -- wait for enough offers

:

This sync process completes when, and only when, it is one of x processes (out
of y) engaging in the partial barrier (i.e., plugged into p.bar).

This construction has an obvious visual representation. Diagram (a) in Figure 3
shows n processes enrolled on a partial barrier requiring 3 synchronisation offers to
complete. Diagram (b) shows the implementation given in this subsection.

4.2.2 Extended Partial Barriers. The p.bar alone is not sufficient to solve the
elves waiting problem when they want to see Santa. If they sync as above on an
p.bar set to 3, when three elves get through the barrier they will try to see Santa
(who may be away with the reindeer). As soon as that group of elves are through
the barrier, another group (out of the 7 left) can come along and also complete the
barrier. There will now be two groups of three elves trying to see Santa – this is
not allowed!

A common idiom with barriers is to schedule some special code to be run on com-
pletion of the barrier but before the processes engaging on the barrier are released.
This can be achieved by generating a signal from the process managing the barrier
to trigger that code: To do this, we extend p.bar to become the xp.bar process by
adding a signal channel (CHAN BOOL ping!) to its parameter list and outputting

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

16 · P. H. Welch and J. B. Pedersen

(a) n processes enrolled on an extended partial barrier

(after 3 process have committed to synchronise, the

extension channel must be pinged before the barrier

completes and those 3 processes are released).

...p (0) p (n-1)

(3)

(b) implementation of an extended partial barrier

(using current occam- mechanisms).

...

xpxp.bar (3).bar (3)

p (0) p (n-1)

a

b

ping

Fig. 4. An extended partial barrier.

TRUE on ping! between its two replicated SEQs. The code implementing this is in
on-line Appendix C.

Now, all that is needed is to wrap the code to be triggered in a process that
waits for the ping signal and runs it. To ensure that this code completes before the
triggering barrier, simply run it inside an extended rendezvous:

BOOL any:

ping ?? any

... process triggered by barrier

Sometimes that condition is not necessary – all that is needed is that the special
code is triggered. This is the case for our system.

Diagram (a) in Figure 4 visualises n processes enrolled on an extended partial
barrier requiring 3 synchronisation offers to complete. Diagram (b) shows the
implementation given in this subsection.

4.2.3 Elves and Santa. Figure 5 shows Santa and the elf processes connected in
a network of channels and partial barriers.

There is the same report channel as shown in Figure 2. This is used by Santa and
the elves for the same reasons as before. There is a just.elves extended partial
barrier of size three, on which elves wait for two others to want to see Santa. When
three are present, a (knock) on Santa’s door is generated, via the extension channel
belonging to the barrier. When Santa accepts that knock, the barrier completes
and the three elves can consult with Santa. This corresponds to the just.reindeer
barrier from Figure 2.

There is a santa.elves (non-extended) partial barrier of size four. This is used
by each group of three elves to wait for santa to greet all of them before the
consultation starts. This is also used by the elves to wait for Santa to conclude the
consultation. Only Santa and the current consulting group of elves will ever try
to use this partial barrier. This corresponds to the santa.reindeer barrier from
Figure 2.

There is an elves.2.santa channel, whose writing end is shared by the elves.
When a group of three elves have assembled, they introduce themselves through
this channel. They will not be blocked at this point, since Santa is expecting them
(having been awoken by the knock on his door from xp.bar). This channel is also
ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · 17

......

reportreport

SantaSanta

Elf (0)Elf (0) Elf (1)Elf (1) Elf (9)Elf (9)

santa.elvessanta.elves (4)(4)

elves.2.santaelves.2.santa

just.elvesjust.elves (3)(3)

Fig. 5. Santa and the elves.

santasanta.elves.b.elves.b

elves.2.santaelves.2.santa

reportreport

Santa

just.elves.bjust.elves.b

...Elf (0)Elf (0) Elf (1)Elf (1) Elf (9)Elf (9)

p.bar (4)

xp.bar (3)

santa.elves.asanta.elves.a

just.elves.ajust.elves.a

just.elves.pingjust.elves.ping

Fig. 6. Santa and the elves (transformed).

used to say goodbye to Santa when the consultation is finished. Since occam-π does
not (currently) support partial barrier connectors, the transformations defined by
Figures 3 and 4 are applied to yield (the directly implementable) Figure 6.

In terms of Figure 6, here is the elf process:

PROC elf (VAL INT id, SHARED CHAN BOOL just.elves.a!, just.elves.b!,

SHARED CHAN BOOL santa.elves.a!, santa.elves.b!,

SHARED CHAN INT to.santa!, SHARED CHAN ELF.MSG report!)

WHILE TRUE

SEQ

CLAIM report ! working; id -- "I’m working" + id

random.wait (WORKING.TIME) -- until I have a problem

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

18 · P. H. Welch and J. B. Pedersen

CLAIM report ! elf.ready; id -- "I want to see Santa" + id

sync (just.elves.a!, just.elves.b!) -- wait for two other elves

CLAIM to.santa ! id -- say hello to Santa

sync (santa.elves.a!, santa.elves.b!) -- wait for others to say hello

CLAIM report ! consult; id -- "Consulting Santa" + id

sync (santa.elves.a!, santa.elves.b!) -- until Santa has had enough

CLAIM report ! elf.done; id -- "I’m done consulting" + id

CLAIM to.santa ! id -- say goodbye to Santa

:

Completing the declaration of the Santa process header from Section 4.1, here
are the channels for communicating with elves that were omitted:

CHAN BOOL just.elves.ping?, CHAN INT from.elves?,

SHARED CHAN BOOL santa.elves.a!, santa.elves.b!,

Recall that, for the elves, Santa is awoken by a ping from the extension channel
of the partial barrier (and not by a communication from one of the elves):

{{{ deal with the elves

BOOL any:

just.elves.ping ? any -- a party of elves is at door

SEQ

CLAIM report ! elves.ready -- "Ho, Ho, Ho, elves are here"

SEQ i = 0 FOR G.ELVES -- for each elf in party

INT id: -- (G.ELVES is size of party)

SEQ

from.elves ? id -- receive elf id

CLAIM report ! greet; id -- "Hello elf " + id

CLAIM report ! consulting -- "Consulting with elves"

sync (santa.elves.a!, santa.elves.b!) -- tell elf party all are here

random.wait(CONSULTATION.TIME) -- consult for a random time

CLAIM report ! santa.done -- "Ok, all done - thanks!"

sync (santa.elves.a!, santa.elves.b!) -- tell elves consultancy over

SEQ i = 0 FOR G.ELVES -- for each elf in party

INT id:

from.elves ?? id -- receive elf id

CLAIM report ! goodbye; id -- "Goodbye elf " + id

}}}

Each elf is held (in an extended rendezvous) whilst Santa says goodbye for the
same reason that Santa held each reindeer whilst unharnessing: so that the “good-
bye” report happens before the elf can get back to work and report “working”.
There are other happens-before relationships enforced by the above santa and elf
processes:

—three elves must have reported that they want to see Santa before Santa is woken
up and announces that the elf party is here – enforced by the extended partial
barrier, just.elves, between the elf processes (moderated by the ping wake-up
call to Santa);

—the elf party must be greeted before Santa says “Consulting with elves” – enforced
by sequential code in the santa process;

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · 19

—Santa says “Consulting with elves” before any elf reports that it is consulting –
enforced by the first partial barrier sync on santa.elves in elf and santa;

—Santa says “all done” before any elf reports its consultancy session is over –
enforced by the second partial barrier sync on santa.elves in elf and santa.

4.3 The Santa Claus System

The Santa Claus system consists of everything shown in Figures 2 and 6. The
report channel is left open (an external parameter) with all other events (channels
and barriers) hidden (local).

PROC santa.system (SHARED CHAN MESSAGE report!)

BARRIER just.reindeer, santa.reindeer:

SHARED ! CHAN INT reindeer.2.santa:

SHARED ! CHAN BOOL just.elves.a: -- extended partial barrier

SHARED ! CHAN BOOL just.elves.b: -- channels for just.elves

CHAN BOOL just.elves.ping: -- (extension channel)

SHARED ! CHAN BOOL santa.elves.a: -- partial barrier channels

SHARED ! CHAN BOOL santa.elves.b: -- for santa.elves

SHARED ! CHAN INT elves.2.santa:

PAR

PAR ENROLL santa.reindeer

santa (reindeer.2.santa?, santa.reindeer,

just.elves.ping?, elves.2.santa?,

santa.elves.a!, santa.elves.b!, report!)

PAR i = 0 FOR N.REINDEER ENROLL just.reindeer, santa.reindeer

reindeer (i, just.reindeer, santa.reindeer,

reindeer.2.santa!, report!)

PAR i = 0 FOR N.ELVES

elf (i, just.elves.a!, just.elves.b!,

santa.elves.a!, santa.elves.b!, elves.2.santa!, report!)

xp.bar (G.ELVES, just.elves.a?, just.elves.b?, just.elves.ping!)

p.bar (G.ELVES + 1, santa.elves.a?, santa.elves.b?)

:

The complexity of the implementation depends on the number of reports required
and how strictly they must conform to happens-before relations. For instance, an
elf has two waiting states it could report: a wait to get into the front group (or
waiting room) that will be next to see Santa and, then, a wait to see Santa (who
may be away delivering toys).

In the model built in this section, an elf only reports when it wants to see Santa.
In Section 6.1, we extend the elf implementation to report both waiting states. We
require three elf reports that they have made the front group before Santa reports
he has been awakened by them. Initially, the arrival of the third elf in the front
group automatically triggers a knock on Santa’s door and, if Santa is sleeping, his
awakening. The third elf’s report (that it is in the front group) and Santa’s report
(that he has been woken by elves) proceed in parallel and could happen in either
order. The correct ordering is later enforced and verified, but extra synchronisations
(and complexity) are needed.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

20 · P. H. Welch and J. B. Pedersen

5. VERIFYING PROPERTIES OF THE SOLUTION

The Santa Claus Problem can be viewed as an exercise in programming concurrent
control logic for safety critical systems. The reliability of such a system is the
most important issue. The software should be formally verified to assure that it is
free from deadlock and livelock, free from race conditions, and that the ordering of
control signals generated by the software does not violate any specified constraints.

A number of obstacles complicate formal verification of code. Firstly, a trans-
lation from the code into the formal model used for verification is necessary (or
in the case where formal verification is performed before the implementation, a
translation from the formal model to the programming language of choice). This
is potentially a challenging task, especially if the language and the formalism have
little in common. The greater the gap, the greater the risk of introducing bugs be-
comes. Secondly, todays verification tools are rarely capable of checking a complete
program without any user support.

Therefore, we believe that the best solution to producing correct (formally veri-
fied) code is by choosing a formalism and a language that are related and a verifi-
cation tool that can assist in ‘computer driven verification’, that is, certain parts of
the code can be verified, and the rest must be formally argued by the programmer.

The solution to the Santa Claus Problem presented in the previous section is
expressed in the process oriented language occam-π, a language based on the the
formal process algebra CSP as well as the π-calculus [Milner 1999]. A formalisation
in CSP is extremely close to the actual occam-π code. This relationship is crucial
in reducing the number of errors when translating between the language and the
formalism or vice versa.

To verify the specification in CSP, we utilise the FDR [Formal Systems (Europe)
Ltd. 1998] tool. FDR can check a number of properties about a CSP specification,
for example: freedom from deadlock and livelock. It can also verify process re-
finement and equivalence under three semantic models of growing strength (traces,
failures, and failures-divergences.)

5.1 The CSP Model

In this section, we translate the occam-π model of the Santa Claus system given
in Section 4 into CSP. The CSP structure (syntax and semantics) directly matches
the occam-π code and could, therefore, have been presented first.

However, occam-π does not pretend to be an implementation of CSP and translat-
ing in the other direction is harder. Some CSP features have large overheads (for
the execution mechanisms currently known and in the occam-π run-time kernel)
and are not yet supported – for example, external choice over arbitrary multiway
events. General CSP systems can be implemented in occam-π, but they have to be
transformed first into equivalent forms that do have direct representation [McEwan
2006]. Although this can always be done, it can add much complexity.

occam-π is a programming language most of whose concurrency mechanisms have
a direct model in CSP (and, therefore, semantics). We prefer, normally, to design
within the patterns allowed by occam-π, knowing that our systems are directly
and efficiently executable and that formal reasoning and/or model checking can be
directly applied.
ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · 21

Some occam-π mechanisms are not addressed by CSP – such as timing and pri-
orities. So, the random delays in the occam-π model (e.g. when a reindeer is on
holiday) are treated as SKIPs in the CSP and the PRI ALT in the santa process is
mapped to a plain external choice. Shared channel-ends are modelled by the shar-
ing processes interleaving on them. The occam-π CLAIM mechanism is a refinement
of this interleaving, since processes trying to use them are fairly queued (rather
than having the arbitrary access allowed by interleaving).

The occam-π extended rendezvous is simply modelled in CSP by introducing
an acknowledgement event for the channel communication. Both processes must
engage on that acknowledgement following each communication – immediately by
the sender but after the rendezvous block by the receiver.

We present the CSP using the machine-readable syntax, CSP-M, accepted by
the FDR [Formal Systems (Europe) Ltd. 1998] model checking tool. The CSP
constants, types and events used by the system are given in the on-line Appendix D.
This appendix also contains the CSP definitions of the partial barrier processes
(P_BAR, XP_BAR), the reindeer process (REINDEER) and the complete Santa Claus
system (SYSTEM). Here, we present the CSP versions of just the elf and Santa
processes to demonstrate the relationship between occam-π executable code and
CSP verifiable expressions.

5.2 Elves

We define the elf process directly from the occam-π declaration in Section 4.2.3:

ELF (id) =

report ! working.id -> RANDOM_TIMEOUT (WORKING_TIME) ;

report ! elfReady.id -> just_elves_a -> just_elves_b ->

elves_2_santa ! id -> santa_elves_a -> santa_elves_b ->

report ! consult.id -> santa_elves_a -> santa_elves_b ->

report ! elfDone.id -> elves_2_santa ! id ->

elves_2_santa_ack -> ELF (id)

where, as mentioned above:

RANDOM_TIMEOUT (WORKING_TIME) = SKIP

Note: for simplicity, the above process has been bound directly to its channels. If
needed (and it is not for this system), instances of this process could be bound
to other channels through channel renaming. We will define the other processes
similarly bound to their channels.

5.3 Santa

Here is the Santa process, following Sections 4.1 and 4.2.3:

SANTA =

(reindeer_2_santa ? id ->

report ! allReindeer.0 -> report ! harness.id ->

(; x:<0..(G_REINDEER - 2)> @

(reindeer_2_santa ? id -> report ! harness.id -> SKIP)) ;

report ! mushMush.0 -> santa_reindeer ->

RANDOM_TIMEOUT (DELIVERY_TIME) ;

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

22 · P. H. Welch and J. B. Pedersen

report ! woah.0 -> santa_reindeer ->

(; x:<0..(G_REINDEER - 1)> @

(reindeer_2_santa ? id -> report ! unharness.id ->

reindeer_2_santa_ack -> SKIP)) ;

SANTA

)

[]

(just_elves_ping ->

report ! threeElves.0 ->

(; x:<0..(G_ELVES - 1)> @

(elves_2_santa ? id -> report ! greet.id -> SKIP)) ;

report ! consulting.0 -> santa_elves_a -> santa_elves_b ->

RANDOM_TIMEOUT (CONSULTATION_TIME) ;

report ! done.0 -> santa_elves_a -> santa_elves_b ->

(; x:<0..(G_ELVES - 1)> @

(elves_2_santa ? id -> report ! goodbye.id ->

elves_2_santa_ack -> SKIP)) ;

SANTA

)

5.4 Deadlock and Livelock

Deadlock freedom is a crucial property that all systems (probably) should have. The
FDR tool contains an option for checking the presence or the absence of deadlock; it
is as simple as loading the desired specification and clicking the ‘deadlock’ button.
In practice, we might encounter one of the problems described earlier: if the model
is large, FDR might either run for a very long time, or simply run out of memory
(exploring the state space needed for the model) and terminate without an answer.

We did encounter this problem when asking FDR to analyse the full model with
10 elves, 9 reindeer, and one Santa. This is where fully automated verification
becomes machine assistance to further reasoning.

Each report made by an elf, reindeer or Santa adds one state to that process.
Each reindeer and elf cycle through 4 reports each. Santa has 21 different reports.
With nine reindeer, ten elves and one Santa, the potential state space increase
arising from the reports is over eight trillion. The actual increase will be less than
this, since large areas of state space will be barred because of the other internal
synchronisations. Nevertheless, that still opens up too much space to analyse.

We need to reduce the state space in the system given to FDR. The report
channel is the only one not hidden within SYSTEM (see Appendix D). None of
the SYSTEM sub-processes synchronise with each other to make a report – they
all interleave on its use. Therefore, no SYSTEM process can ever be blocked (for
internal reasons) trying to make a report. For deadlock analysis of SYSTEM, this
report channel is irrelevant and may be removed. Resubmitting SYSTEM (without
any reports), FDR confirms that this system is deadlock free. We can now deduce
that the original SYSTEM (with all the reports) is also deadlock free.

To prove the absence of livelock, we click the ‘livelock’ button. FDR immediately
reports that the version of SYSTEM (without any reports) is not livelock free. This is
because we removed all external signalling, but left the system still running. That
is livelock!
ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · 23

To deal with this, a third version of SYSTEM is produced that leaves in just two
reports, one in each branch of the alternation in the Santa process. We now have
external reports whenever a group of elves or reindeer wake up Santa. FDR confirms
that the system is livelock-free. There can be no infinite sequence of purely internal
actions. Putting back all the reports merely adds external actions. Therefore, the
original SYSTEM is also livelock-free.

This is a major achievement in terms of proving properties for safety critical
software. For example, it would be catastrophic if the system controlling the
flight correction system of the B2 plane deadlocked. (The B2 plane is aerody-
namically unstable on all three axes and require constant flight correction; a task
of which no human is capable, thus it must be done by computerised fly-by-wire
systems [Wikipedia 2007]). This would most likely cause the plane to lose control
and crash.

We have now succeeded in proving two of the three types of properties that we
wished to reason about, namely the absence of deadlock and livelock. What remains
is to reason about the ordering of output signals, which we will do in the following
section.

5.5 Event Ordering and Synchronisation

In the previous section we illustrated the use of the FDR tool to verify that the
implementation does not livelock or deadlock. Another issue is of equal importance
exists, namely the ordering of any control signals it generates.

In our solution of the Santa Claus problem, all processes share a report channel.
Considering these reports as control signals, we now concern ourselves with ensuring
that our control logic does not generate incorrect sequences of these signals.

The idea of a shared reporting channel over which control messages for an em-
bedded system are serialised is not very realistic. In such a system, each internal
component may be wired directly to the device it controls, so that the signals may
travel in parallel. In fact, CSP makes no semantic distinction between a realisation
of the report channel as a shared channel (down which reports are serialised) and
a parallel array of channels indexed by ReportTag – CSP semantics serialise all
events. The occam-π implementation (Section 4) defines a SHARED report channel.
This could trivially be changed to an array of separate reporting channels, with no
change to the CSP formalisation.

Simply observing serialised reports from SYSTEM may reveal out-of-order reports.
Of course, if none are observed, this does not prove that such things may not
happen. However, we can capture assertions about trace ordering in CSP in such a
way that their adherence by a system can be verified. Here is one such (informal)
assertion:

Santa never says “Ho Ho Ho ... Some elves are here” until at least
three elves have reported that they are ready to consult.

To check such assertions formally, we turn to the FDR tool once again. First
we devise a process that performs the check and causes deadlock if the check fails.
Then, we add this checking process to the system and ask FDR if it is still deadlock-
free. If that passes, we know that the assertion is always honoured. For the given
assertion, we need a checker that:

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

24 · P. H. Welch and J. B. Pedersen

—accepts and counts inputs on the report channel (report ? x.y);
—ignores reports whose message type (x) is not elfReady or threeElves;
—adds one to the count if the message type is elfReady;
—STOPs if the message type is threeElves and the count is less than three –

otherwise removes three from the count.

Here it is:

CHECK_A (n) =

report ? x.y ->

if x == elfReady then

if n > N_ELVES then STOP else CHECK_A (n+1)

else if x == threeElves then

if n < 3 then STOP else CHECK_A (n-3)

else

CHECK_A (n)

where STOP is a process that refuses to engage in any activity – not even termination.
It represents a deadlocked process.

FDR cannot analyse any process containing unbounded recursion. The test whose
falsity triggers CHECK_A (n+1) in the preceding script will always be false when this
checker is run in parallel with SYSTEM. However, this extra test bounds the recursion;
so far as the FDR analyser is concerned, we need it! The other test whose falsity
triggers CHECK_A (n-3) later in the script is, of course, essential for the purpose of
the check.

Now, add this process into the system, initialising its count to zero:

CHECK_A_SYSTEM = SYSTEM [| {| report |} |] CHECK_A (0)

The checking process and the original system synchronise on the report channel
in the above. If SYSTEM ever generates a threeElves message without there being
at least three outstanding elfReady messages, the CHECK_A (0) process stops. Any
further reports from SYSTEM will be blocked. Since Santa has to generate a report
(at least) once per cycle, Santa will stop. The reindeer and elves communicate
with Santa (at least) once per cycle, so they will all stop. The two partial barrier
processes also communicate with Santa (at least) once per cycle, so they will all
stop. Hence, CHECK_A_SYSTEM will deadlock. FDR says CHECK_A_SYSTEM will not
deadlock. Therefore, the assertion never fails.

6. REPORTING MORE DETAIL

There are more states in the SYSTEM than are currently being reported.

6.1 Santa’s Waiting Room

An interesting example concerns the assembly of elves into groups of three. There
are two stages that each elf goes through, represented by the events just_elves_a
and just_elves_b. We may imagine the state in between these events represents
an elf being in Santa’s waiting room, a room that can hold only three of them (a
property enforced by the logic within XP_BAR process). To observe these elf states,
we add another report to the elf process (Section 5.2):
ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · 25

ELF (id) =

...

just_elves_a -> report ! elfWaiting.id -> just_elves_b ->

...

Let us verify that the elfWaiting reports obey the same constraints as elfReady
with respect to the threeElves reports from Santa:

Santa never says “Ho Ho Ho ... Some elves are here” until at least
three elves have reported that they are in the waiting room.

Similar to CHECK_A in Section 5.5, we define:

CHECK_B (n) =

report ? x.y ->

if x == elfWaiting then

if n > N_ELVES then STOP else CHECK_B (n+1)

else if x == threeElves then

if n < 3 then STOP else CHECK_B (n-3)

else

CHECK_B (n)

Fortunately, when FDR is asked to consider:

CHECK_B_SYSTEM = SYSTEM [| {| report |} |] CHECK_B (0)

its deadlock freedom check fails. The event trace leading to deadlock reported
by FDR shows that a Santa threeElves report can occur before any elfWaiting
report.

In CHECK_A_SYSTEM, a similar problem does not arise because Santa’s threeElves
report requires a prior just_elves_ping, which requires the XP_BAR process to have
received three just_elves_a events (each of which requires an elfReady report to
have been made).

In the CHECK_B_SYSTEM, deadlock does arise. Santa’s threeElves report still
requires a prior just_elves_ping, which requires the XP_BAR process to have re-
ceived three just_elves_a events. None of these requires any elfWaiting report
to have been made. FDR observes, therefore, that threeElves may occur first –
provoking STOP in CHECK_B and deadlock in CHECK_B_SYSTEM. This needs a little
attention.

6.2 A Better Waiting Room

We need to modify the system so that CHECK_B does not cause deadlock. We need
to enforce the elfWaiting reports to be made before just_elves_ping. Once
we know we have to do this, it is easy – simply add an acknowledgement event
for the just_elves_a event and report elfWaiting in between. This requires
modifications to both the ELF process and to XP_BAR (Appendix D.2). Because the
latter now has behaviour beyond an extended partial barrier, we rename it as WR
(for waiting room):

WR (n) =

(; x:<1..n> @ (just_elves_a -> just_elves_a_ack -> SKIP)) ;

just_elves_ping -> (; x:<1..n> @ (just_elves_b -> SKIP)) ; WR (n)

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

26 · P. H. Welch and J. B. Pedersen

The elf process becomes:

ELF (id) =

...

just_elves_a -> report ! elfWaiting.id ->

just_elves_a_ack -> just_elves_b ->

...

Now, rebuild SYSTEM as SYSTEM_WR, substituting WR for XP_BAR. Then, ask FDR to
analyse:

CHECK_B_SYSTEM_WR = SYSTEM_WR [| {| report |} |] CHECK_B (0)

and it reports this deadlock free. Therefore, the assertion from Section 6.1 is verified
for this new system.

6.3 An Even Better Waiting Room

The waiting room only has room to hold three elves at a time. We should be able
to strengthen our assertion concerning the elf reports that they are in the waiting
room and Santa’s welcome report as follows:

Santa never says “Ho Ho Ho ... Some elves are here” until exactly
three elves have reported that they are in the waiting room.

Here is the necessary check:

CHECK_C (n) =

report ? x.y ->

if x == elfWaiting then

if n >= 3 then STOP else CHECK_C (n+1)

else if x == threeElves then

if n < 3 then STOP else CHECK_C (0)

else

CHECK_C (n)

However, when FDR analyses

CHECK_C_SYSTEM_WR = SYSTEM_WR [| {| report |} |] CHECK_C (0)

it reports deadlock, with the triggering trace showing four elfWaiting reports and
no threeElves. The problem is that, although the waiting room does not allow
four elves to be present, as soon it wakes up Santa (just_elves_ping) it releases its
three elves (just_elves_b) and recurses to allow the next group of elves to assemble
(just_elves_a). The arrival of the first elf in this next group and its reporting
of that fact proceeds in parallel with Santa’s report welcoming the previous group
(threeElves). These two reports may happen in either order – hence the violation.

To enforce our required constraint on the ordering of these reports is also easy.
Simply delay the recursion of the waiting room until Santa has made his welcoming
report – no elf wanting to enter can do so until that recursion happens. To enforce
this delay, modify the waiting room process to offer a second just_elves_ping to
Santa, which he does not accept until he has made that welcoming report.

WR (n) =

(; x:<1..n> @ (just_elves_a -> just_elves_a_ack -> SKIP)) ;

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · 27

just_elves_ping -> (; x:<1..n> @ (just_elves_b -> SKIP)) ;

just_elves_ping -> WR (n)

Santa’s response to being woken up by a consulting group of elves needs to change:

SANTA =

(reindeer_2_santa ? id -> ...)

[]

(just_elves_ping ->

report ! threeElves.0 ->

(; x:<0..(G_ELVES - 1)> @

(elves_2_santa ? id -> report ! greet.id -> SKIP)) ;

just_elves_ping -> report ! consulting.0 -> ...

)

For verifying CHECK_C, the second just_elves_ping could have been made im-
mediately following the threeElves report. We made SANTA issue his greeting
reports to the arriving elves first to ensure these reports are completed before any
new elves report they are in the waiting room – but that is a different issue.

Now, when FDR is asked to verify deadlock freedom of CHECK_C_SYSTEM_WR, it
does. Sections 4.1 and 4.2.3 list several other ordering constraints. These can all
be verified in the same way.

6.4 Event Ordering through Refinement

Previously, we have demonstrated verification through deadlock checking; another
approach uses refinement checking. FDR analyses CSP processes with respect to
three semantic models: traces, failures and failures-divergences. A process trace is
a finite ordered sequence of events that it can perform. A process failure is a trace
paired with a refusal set (which is a set of events that, when offered to the process
after it has performed the given trace, it may refuse). A process divergence is a
trace such that, after performing that trace, it may livelock (i.e., it may perform an
infinite sequence of internal actions, refusing all external events). The traces of a
process is the set of all its traces. The failures of a process is the set of all its failures.
The divergences of a process is the set of all its divergences. Traces-refinement is
defined as this:

SPEC vT IMPL =̂ traces(IMPL) ⊆ traces(SPEC)

which reads SPEC vT IMPL: “a specification process SPEC is traces-refined by an
implementation process IMPL”.

Failures-refinement and failures-divergence-refinement are defined similarly:

SPEC vF IMPL =̂ failures(IMPL) ⊆ failures(SPEC)

SPEC vFD IMPL =̂ (failures(IMPL) ⊆ failures(SPEC)) ∧

(divergences(IMPL) ⊆ divergences(SPEC))3

A more in-depth discussion of traces, refinement and failures can be found in [Hoare
1985; Roscoe 1997; Schneider 1999].

3Note the direction of the v, which might be a little counterintuitive.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

28 · P. H. Welch and J. B. Pedersen

Now consider the following ordering rule:

After three elves have reported their arrival in the waiting room, Santa
greets them and only them. The order in which Santa greets these elves
may differ from the order in which they arrived. For each consultation,
the arrival reports must happen before the greetings.

Here is a formalisation of this rule:

WG3 =

|~| x:E_set @ report ! elfWaiting.x -> (

|~| y:diff(E_set, {x}) @ report ! elfWaiting.y -> (

|~| z:diff(E_set, {x,y}) @ report ! elfWaiting.z -> (

|~| a:{x,y,z} @ report ! greet.a -> (

|~| b:diff({x,y,z},{a}) @ report ! greet.b -> (

|~| c:diff({x,y,z},{a,b}) @ report ! greet.c -> WG3

)))))

WG3 is a sequential process generating only elfWaiting reports and Santa greet
reports. First, an elf with id x chosen from the set {0, . . . , 9} says he is waiting;
this is followed by a waiting message from an elf with an id y chosen from the set
{0, . . . , 9}\{x}, followed by a waiting message from an elf with an id z chosen from
the set {0, . . . , 9} \ {x, y}. Now Santa greets an elf with id a from the set {x, y, z},
then another greeting of an elf with id b from the set {x, y, z} \ {a}, and finally
greets an elf with id c from the set {x, y, z} \ {a, b}.

The |~| e:S @ P construction is a replicated internal choice. That is, the process
P is executed with a value of e chosen arbitrarily from the set of elements of S.
diff(S, T) = S\ T where S and T are sets.

To compare SYSTEM_WR against WG3, we must at least ensure trace equivalence.
To do this, all reports other than elfWaiting and greet must be hidden (or com-
mented out). Assume this has been done. FDR then confirms the following traces
refinements: SYSTEM_WR vT WG3 and WG3 vT SYSTEM_WR. This means they are traces
equivalent. Thus we can conclude that the two processes have exactly the same set
of traces. In particular, there is no trace of SYSTEM_WR that violates the ordering
rule.

Traces refinement does not allow us to conclude anything about the liveness of
the systems analysed. For this, we need the failures model. FDR quickly verifies
that WG3 vF SYSTEM_WR. This means that any failure of SYSTEM_WR is also a failure
of the specification WG3 (i.e., it is allowed). Turning this around: suppose WG3
generates a trace, t, and is offered a set of events, S, that is not a refusal set (i.e.,
it will definitely accept one of them). Then, when SYSTEM_WR generates that same
trace and is offered the same set of events, SYSTEM_WR will definitely proceed with
one of them. It is as alive as the specification WG3 – and never stalls.

We cannot compare WG3 and SYSTEM_WR under the failures-divergences model
because the hiding of all reindeer reports allows the latter to diverge – and WG3
has no divergences. To make such comparison, WG3 must be enhanced to allow the
interleaving of at least one reindeer report (e.g. Santa’s allReindeer) – and this
must not be hidden in SYSTEM_WR (which eliminates its divergence).

We now have CSP formalisms for our Santa Claus system, verified for livelock
and deadlock freedom and that a range of event ordering rules are obeyed. This
ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · 29

now needs to be turned into executable code – a process that is, and has to be,
trivial – see on-line Appendix E.

7. RELATED WORK

7.1 Other Implementations

As earlier described, a number of other implementations of possible solutions to the
Santa Claus Problem exist.

The original solution by Trono himself [Trono 1994] was in Java; the corrected
solution by Ben-Ari [Ben-Ari 1998] was in Ada.

The people behind Polyphonic C# [Benton et al. 2004] (now known as Cω)
have demonstrated a solution [Benton 2003] using chords in Cω. Chords allow
a method to have multiple headers, and only when all headers have been called
will the body execute; this makes ‘message passing’ (and synchronisation) between
multiple processes possible.

Simon Peyton Jones also uses the Santa Claus Problem as a running example
in his chapter “Beautiful Concurrency” in the Beautiful Code book [Jones 2007].
Jones’ solution is in Concurrent Haskell with Software Transactional Memory.

Other approaches using Actors with Multi-headed Message Receive Patterns [Sulz-
mann et al. 2008] (Actors, which preceded the notion of active objects, were origi-
nally proposed by Hewitt [Hewitt 1977]), Active C# [Güntensperger and Gutknecht
2004], and state classes [Cameron et al. 2006].

We have additional solutions ([Hurt and Pedersen 2008]) written in Java, C#,
Groovy, C with Pthreads and C with MPI [Dongarra 1994]. These are available at
www.santaclausproblem.net, together with a number of other occam-π implementa-
tions (including a symmetric version that does not use barriers, and a version using
process mobility).

Note that Trono’s description of the problem describes only the interactions be-
tween entities. It does not describe any external signalling, reflecting internal state
changes, that are necessary to verify behaviour. Simon Peyton Jones’ solution to
the Santa Claus problem has only four external signals (i.e., print statements re-
porting reindeer delivering toys, elves consulting with Santa, Santa being woken by
all the reindeer, and Santa being woken by a group of three elves). In our version
of the system, we defined 17 different kinds of report, reflecting key state changes
within the entities – and, then, specified a range of properties on those reports to
be verified. See on-line Appendix F for an abbreviated occam-π solution using only
the four signals described by Peyton Jones.

7.2 Model Checking and Formal Verification

Analysing (or developing) code by modelling aspects of interest in a formal specifi-
cation language has been an area of immense interest over the years. Trusted tools
that can automatically check for a range of standard and user-specifiable definitions
of good behaviour are required. We mention a few of these here.

One often used formalism, when it comes to protocol verification, is Murφ [Melton
et al. 1996] (Examples include [Dill et al. 1992] and [Mitchell et al. 1997]). Murφ
can be used to describe a system of iterated guarded commands, much like the
Unity language of [Chandy and Misra 1988]. A Murφ specification is compiled to

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

30 · P. H. Welch and J. B. Pedersen

C++ and linked with code for a verifier which checks for invariant violations, error
statements, assertion violations, and deadlock [Dill et al. 1992]. This tool is based
on Bryant’s Ordered Binary Decision Diagrams (OBDD) [Bryant 1986], and like
other tools for (formal) verification the state space explosion becomes a problem,
but certain techniques do exist to help alleviate this [Ip and Dill 1996].

Another popular tool, also based on BBDs is νSMV [Cimatti et al. 2002], which
allows specifications to be expressed in Computational Tree Logic (CTL) and Linear
Temporal Logic (LTL), using BDD-based and SAT-based [Biere et al. 1999] model
checking techniques.

A similar approach can be found in the SPIN [Holzmann 1997] model checker,
which is based on Linear Temporal Logic (LTL), and uses the Promela (Process
Meta Language) to specify the system to be verified. A new version of SPIN for
checking nonblocking MPI programs (mpiSpin) is also being developed [Siegel 2007].

A different approach to formal verification (or at least deadlock detection) is
Petri nets and colouring games [Huber et al. 1985; Jensen 1997] where systems
are modelled by graphs whose nodes can contain tokens, which are transferred
to other nodes along the arcs of the graph according to certain logic rules. In
order to determine deadlock-freedom in coloured Petri nets, an NP-complete task,
an occurrence graph is constructed – an occurrence graph represents all possible
markings, that is, all possible configurations of the Petri net, and strongly connected
components are computed. If a strongly connected component exists that does not
have any arcs leaving it, then a configuration exists that represents either a livelock
or a deadlock. Techniques for reducing the size of the occurrence graph exist; even
so, the size of the graphs and the time to evaluate them can both be exponential.

8. REFLECTIONS

8.1 Process Orientation

This paper presents a process-oriented solution to the Santa Claus problem. Ini-
tially, the overall design is laid out through process network diagrams, whose nodes
represent processes and edges show allowed synchronisations (data flow and barri-
ers). Executable occam-π code and model-checkable CSP script are then developed,
with each process being produced independently (thanks to the compositionality of
the underlying semantics) and the network descriptions derived directly from the
diagrams. State information in this system is sufficiently small so that no state
reducing abstractions are needed in the CSP version4. This means that the occam-
π and CSP representations are in 1-1 correspondence and that development and
maintenance can be performed in whichever form is most convenient.

8.2 Formal Verification

We claim that process-oriented design leads to solutions that directly reflect natural
structures in the problem space and that, therefore, our confidence in these solutions
is high – they have an element of obvious correctness that makes us feel comfortable.
However, we have both executable and model checkable forms so that this confidence
can be formally explored and reinforced. Occasionally, when verification shows

4A single unconstrained 32-bit integer potentially introduces four gigastates!

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · 31

our confidence to have been misplaced (e.g. Section 6.1), corrections are simple to
perform and (re-)verify (e.g. Sections 6.2 and 6.3).

At least for Santa Claus, the evidence is this paper supports the above claim.
The occam-π code worked first time – once it had passed the stringent safety rules
checked by the compiler. Correct output appears and the system has never been
seen to deadlock. Applying the FDR model checker to the CSP script indeed verifies
the absence of deadlock and other bad behaviours, such as livelock. The solution
is also free from data race hazards (unsynchronised access to shared information):
such hazards do not exist in CSP or occam-π – they have no expression.

Other constraints, specific to the additional reporting we have added to the re-
quirements, have been formalised and verified. Such signals provide external evi-
dence of internal activity. They can be used to drive an animation of that activity
or, perhaps, to control the operation of some complex machinery (whose rules of
operation are modelled by the system). If such machines are safety critical and
inappropriate (e.g. wrongly ordered) control signals would lead to breakdown, ver-
ification is essential.

8.3 The Santa Claus Experience

An example of the formal specification and verification of signal ordering rules is
shown in Section 5.5. The rule is directly modelled by a CSP process, CHECK A,
observing the system reports. This observer provokes deadlock (by simply stop-
ping and, hence, refusing further reports) if it sees a rule violation. However, the
model checker verifies deadlock-freedom of the parallel observer-observed system.
Therefore, we may deduce that the observed system always honours the rule.

A maintenance change, introducing further reports showing detail of more in-
ternal states, was described in Section 6.1. Perhaps these signals were needed to
drive a more sophisticated animation (or machine). Here was an example where
our confidence in the “obvious correctness” of our design was dented. The original
reporting rule (whose verification still, of course, holds in the modified system) was
itself modified by replacing some of the old reports with the new ones.

Although we expected the rule to be honoured – and we never saw it dishonoured
in any run of the executable – the model checker immediately reported the potential
for violation and told us exactly how it could occur! Armed with this information,
the CSP script was easily changed to eliminate that particular problem. Formal
verification then confirmed that the corrected system now obeyed the new rule,
along with all the old rules. Because of the direct structural correspondence between
the CSP script and occam-π code, this correction was trivially carried over to the
executable form (on-line Appendix E). A similar development was described in
Section 6.3, although this time we had anticipated the need for system correction.

A different approach to rule verification is described in Section 6.4. This time, a
(highly) non-deterministic process is built to generate only the signals mentioned
in the ordering rule and, explicitly, to honour that rule – this becomes the formal
specification of the rule. The model checker then verifies that our system, with all
signals other than those in the rule hidden, failure-refines that specification. This
means that our system is as alive as the specification – this is, after any trace of
its execution, the implementation is able to perform anything that the specification
demands.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

32 · P. H. Welch and J. B. Pedersen

8.4 Some Other Considerations

There is one aspect of our solution that we have not verified: Santa’s prioritisation
of the reindeer wake-up signal over that from a group of elves. Our implementation
is direct and trivial, using the PRI ALT construct of occam-π (Sections 3.4 and 4.1).
Our CSP formalisation maps this to a plain external choice (Section 5.3). CSP
does not address priorities, so we have no direct way to express this part of the
specification formally. We can, however, express this indirectly (and verify) using
an additional priority managing process with which Santa, the reindeer and the
elves must all engage. This is discussed in the on-line Appendix G.

We note that, even though switching between executable occam-π code and
model-checkable CSP script is not difficult, it would be simpler to deal with only
one formalism. Prospects for this are discussed in on-line Appendix H.

Finally, the solutions developed in this paper work with only the static net-
work mechanisms of occam-π. All connections between processes (whether through
channels or barriers) are laid down in advance. They are always available to the
processes and care must be taken that they are used only at appropriate times.

Mobile processes, along with mobile channels and barriers, enable process net-
works to be dynamic: they may change their size (number of processes, channels,
barriers) and shape (connection topology) as they run – much like living organisms.
One of the benefits is that all connections do not have to be established statically,
in advance of when they are needed and open to abuse. This is discussed in on-line
Appendix I.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Li-
brary by visiting the following URL: http://www.acm.org/pubs/citations/
journals/toplas/2010-32-4/p1-welch.

ACKNOWLEDGMENTS

We thank Jason Hurt from the University of Nevada, Las Vegas, for the work put
into the several versions of the Santa Claus problem in other languages that he
wrote for us for comparison reasons [Hurt and Pedersen 2008].

Special thanks are also owed to Kurt Wallnau of the Software Engineering In-
stitute at Carnegie Mellon University. Kurt pointed out the problem discussed in
Section G of not having a verifiable solution to the prioritised choice exercised by
Santa (between responding to reindeer or elves) and the apparent violation of this
requirement by our solution. He also assisted in its resolution.

We thank all our colleagues in the concurrency research group [Barnes et al. 2010]
at the University of Kent for the (on-going) design and construction of the occam-π
language and toolset, and their constructive criticisms on this paper.

Finally, we thank our anonymous reviewers of this paper for their diligence and
valuable feedback and advice. This was much appreciated.

REFERENCES

Barnes, F. 2006. Compiling CSP. In Communicating Process Architectures 2006, P. Welch,
J. Kerridge, and F. Barnes, Eds. Concurrent Systems Engineering Series, vol. 64, WoTUG-29.
IOS Press, Amsterdam, The Netherlands, 377–388. ISBN: 1-58603-671-8.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · 33

Barnes, F. and Welch, P. 2004. Communicating Mobile Processes. In Communicating Process
Architectures 2004, I. East, J. Martin, P. Welch, D. Duce, and M. Green, Eds. Concurrent
Systems Engineering Series, ISSN 1383-7575, vol. 62, WoTUG-27. IOS Press, Amsterdam, The
Netherlands, 201–218. ISBN: 1-58603-458-8.

Barnes, F., Welch, P., Moores, J., and Wood, D. 2010. The KRoC Home Page. Systems
Research Group, University of Kent, http://www.cs.kent.ac.uk/projects/ofa/kroc/.

Barnes, F., Welch, P., Sampson, A., Ritson, C., Dimmich, D., Brown, N., Simpson, J.,
Warren, D., and Bonnici, E. 2010. Concurrency Research Group, Computing Laboratory,
University of Kent. http://www.cs.kent.ac.uk/research/groups/sys/concur.html.

Barrett, G. 1995. Model Checking in Practice: The T9000 Virtual Channel Processor. IEEE
Transactions on Software Engineering 21(2), 69–78. doi:10.1109/32.345823.

Ben-Ari, M. 1998. How to Solve the Santa Claus Problem. Concurrency: Practice and Experi-
ence 10, 6, 485–496.

Benton, N. 2003. Jingle Bells: Solving the Santa Claus Problem in Polyphonic C#. Technical
Report, Microsoft Research.

Benton, N., Cardelli, L., and Fournet, C. 2004. Modern Concurrency Abstractions for C#.
In ACM Transactions on Programming Languages and Systems. Vol. 26 (5). ACM Press, 769
– 804.

Biere, A., Cimatti, A., Clarke, E., and Zhu, Y. 1999. Symbolic Model Checking without
BDDs. In Tools and Algorithms for Construction and Analysis of Tools and Algorithms for
Construction and Analysis of Systems.

Brown, N. 2007. C++CSP2: a Many-to-Many Threading Model for Multicore Architectures. In
Communicating Process Architectures 2007, A. McEwan, S. Schneider, W. Ifill, and P. Welch,
Eds. Concurrent Systems Engineering Series, vol. 65, WoTUG-30. IOS Press, Amsterdam, The
Netherlands, 183–205. ISBN: 978-1-58603-767-3.

Brown, N. and Welch, P. 2003. An Introduction to the Kent C++CSP Library. In Commu-
nicating Process Architectures 2003, J. Broenink and G. Hilderink, Eds. Concurrent Systems
Engineering Series, ISSN 1383-7575, vol. 61, WoTUG-26. IOS Press, Amsterdam, The Nether-
lands, 139–156.

Bryant, R. 1986. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transac-
tions on Computers C-35, 8 (August), 253–267.

Buth, B., Kouvaras, M., Peleska, J., and Shi, H. 1997. Deadlock Analysis for a Fault-Tolerant
System. In Proceedings of the 6th. International Conference on Algebraic Methodology and
Software Technology (AMAST97). 60–75.

Buth, B., Peleska, J., and Shi, H. 1999. Combining Methods for the Livelock Analysis of
a Fault-Tolerant System. In Proceedings of the 7th. International Conference on Algebraic
Methodology and Software Technology (AMAST98). 124–139.

Cameron, N., Damiani, F., Drossopoulou, S., Giachino, E., and Giannini, P. 2006. Solving
the Santa Claus Problem using State Classes. Technical Report, Dip. di inf., Univ. di Torino.
http://www.di.unito.it/~damiani/papers/scp.pdf.

Chandy, K. and Misra, J. 1988. Parallel Program Design – a Foundation. Addison-Wesley.

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Se-
bastiani, R., and Tacchella, A. 2002. νSMV 2: An Open Source Tool for Symbolic Model
Checking. In Proceeding of International Conference on Computer-Aided Verification (CAV
2002) (27–31).

Dill, D., Drexler, A., Hu, A., and Yang, C. 1992. Protocol Verification as a Hardware Design
Aid. In IEEE International Conference on Computer Design.

Dongarra, J. 1994. MPI: A Message Passing Interface Standard. The International Journal of
Supercomputers and High Performance Computing 8, 165–184.

Formal Systems (Europe) Ltd. 1998. Failures-Divergence Refinement: FDR2 manual.

Goldsmith, M., Roscoe, A., and Scott, B. 1993. Denotational Semantics for occam2 (part 1).
Transputer Communications 1(2), 65–91. John Wiley & Sons Ltd.

Goldsmith, M., Roscoe, A., and Scott, B. 1994. Denotational Semantics for occam2 (part 2).
Transputer Communications 2(1), 25–67. John Wiley & Sons Ltd.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

34 · P. H. Welch and J. B. Pedersen

Güntensperger, R. and Gutknecht, J. 2004. Active C#. In 2nd International Workshop .NET
Technologies 2004. 47–59.

Hall, A. and Chapman, R. 2002. Correctness by Construction: Developing a Commercial Secure
System. IEEE Software 19 (1), 18–25. doi:10.1109/52.976937.

Hewitt, C. 1977. Viewing Control Structures as Patterns of Passing Messages. Artificial Intel-
ligence 8, 3 (June), 323–364. Elsevier Science B.V.

Hoare, C. A. R. 1985. Communicating Sequential Processes. Prentice-Hall.

Holzmann, G. 1997. The Model Checker Spin. IEEE Transactions on Software Engineering 23, 5
(May), 279–295.

Huber, P., Jensen, A., Jepsen, L., and Jensen, K. 1985. Reachability Trees for High-Level
Petri Nets. Theoretical Computer Science 45, 261–292.

Hurt, J. and Pedersen, J. B. 2008. Solving the Santa Claus Problem: a Comparison of Various
Concurrent Programming Techniques. In Communicating Process Architectures 2008. Concur-
rent Systems Engineering Series, vol. 66, WoTUG-31. IOS Press, Amsterdam, The Netherlands,
381–396. ISBN: 978-1-58603-907-3.

Ip, C. and Dill, D. 1996. Better Verification through Symmetry. Formal Methods in System
Design 9, 1-2 (August), 41–75.

Jacobsen, C. and Jadud, M. 2004. The Transterpreter: A Transputer Interpreter. In Com-
municating Process Architectures 2004, D. East, P. Duce, D. Green, J. Martin, and P. Welch,
Eds. Concurrent Systems Engineering Series, vol. 62, WoTUG-27. IOS Press, Amsterdam, The
Netherlands, 99 – 106.

Jensen, K. 1997. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use
(Volume 1). Springer. ISBN: 3540609431.

Jones, S. 2007. Beautiful concurrency. In Beautiful Code: Leading Programmers Explain How
They Think, A. Oram and G. Wilson, Eds. O’Reilly.

Lamport, L. 1978. Time, Clocks and the Orderings of Events in a Distributed System. Commu-
nications of the ACM 21, 558–565.

Lowe, G. 1996. Breaking and Fixing the Needham-Schroeder Public-Key Protocol using FDR. In
Tools and Algorithms for the Construction and Analysis of Systems. Springer-Verlag, 147–166.

McEwan, A. 2006. Concurrent Program Development. DPhil thesis, University of Oxford.

McEwan, A. and Schneider, S. 2007. Modeling and Analysis of the AMBA Bus Using CSP
and B. In Communicating Process Architectures 2007, A. McEwan, S. Schneider, W. Ifill,
and P. Welch, Eds. Concurrent Systems Engineering Series, vol. 65, WoTUG-30. WoTUG, IOS
Press, Amsterdam, The Netherlands, 379 –398.

Melton, R., David L. Dill, Ip, C., and Stern, U. 1996. Murφ Annotated Reference Manual.
Stanford University.

Milner, R. 1999. Communicating and Mobile Systems: the π-Calculus. Cambridge University
Press. ISBN-10: 0521658691, ISBN-13: 9780521658690.

Mitchell, J., Mitchell, M., and Stern, U. 1997. Automated Analysis of Cryptographic Pro-
tocols using Murφ. In IEEE Symposium on Security and Privacy.

Muller, H. and Walrath, K. 2000. Threads and Swing. Sun Developer Network. Available
from: http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html.

Ritson, C. and Welch, P. 2007. A Process-Oriented Architecture for Complex System Mod-
elling. In Communicating Process Architectures 2007, A. McEwan, S. Schneider, W. Ifill, and
P. Welch, Eds. Concurrent Systems Engineering Series, vol. 65, WoTUG-30. IOS Press, Ams-
terdam, The Netherlands, 249–266. ISBN: 978-1-58603-767-3.

Ritson, C. G., Sampson, A. T., and Barnes, F. R. M. 2009. Multicore Scheduling for
Lightweight Communicating Processes. In Coordination Models and Languages, COORDINA-
TION 2009, Lisboa, Portugal, June 9-12, 2009. Proceedings, J. Field and V. T. Vasconcelos,
Eds. Lecture Notes in Computer Science, vol. 5521. Springer, 163–183.

Roscoe, A. 1997. The Theory and Practice of Concurrency. Prentice Hall.

Roscoe, A. 2009. On the Expressiveness of CSP. http://www.comlab.ox.ac.uk/publications/

publication2766-abstract.html.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · 35

Sampson, A. 2007. Compiling occam to C with Tock – CPA 2007 Fringe. Systems Research
Group, University of Kent, http://www.wotug.org/paperdb/send file.php?num=217.

Sampson, A., Brown, N., Ritson, C., Jacobsen, C., Jadud, M., and Simpson, J. 2010. Tock
(Translator from occam to C from Kent) Home Page. Systems Research Group, University of
Kent, http://projects.cs.kent.ac.uk/projects/tock/trac/.

Sampson, A., Ritson, C., Jadud, M., Barnes, F., and Welch, P. 2010. occam-π Home Page.
Systems Research Group, University of Kent, http://occam-pi.org/.

Schneider, S. 1999. Concurrent and Real-time Systems — The CSP Approach. Wiley and Sons
Ltd., UK, Baffins Lane, Chichester, UK. ISBN: 0-471-62373-3.

Schneider, S. and Delicata, R. 2004. Verifying Security Protocols: an Application of CSP.
In Communicating Sequential Processes. The First 25 Years, A. Abdallah, C. Jones, and
J. Sanders, Eds. Vol. LNCS 3525. Springer Verlag, 243 – 263.

SGS-THOMSON Microelectronics Limited. 1995. occam 2.1 Reference Manual. Prentice-
Hall.

Siegel, S. 2007. Model Checking Non-blocking MPI Programs. Verification, Model Checking,
and Abstract Interpretation 4349, 44–58.

Sulzmann, M., Lam, E., and Van Weert, P. 2008. Actors with Multi-headed Message Receive
Patterns. In Coordination Models and Languages, COORDINATION 2008, Oslo, Norway,
June 4-6, 2008. Proceedings, D. Lea and G. Zavattaro, Eds. Lecture Notes in Computer Science,
vol. 5052. Springer. ISBN 978-3-540-68264-6.

Trono, J. 1994. A New Exercise in Concurrency. SIGCSE Bulletin 26, 3, 8–10.

Valiant, L. 1990. A Bridging Model for Parallel Computation. In Communications of the ACM.
Vol. 33 (8). ACM Press, 103 – 111.

Welch, P. 2000. Process Oriented Design for Java: Concurrency for All. In Proceedings of
Parallel and Distributed Process Techniques and Applications 2000, H. Arabnia, Ed. Vol. 1.
CSREA, CSREA Press, Las Vegas, Nevada, USA, 51–57. ISBN: 1-892512-52-1.

Welch, P. 2006. A Fast Resolution of Choice between Multiway Synchronisations. In Communi-
cating Process Architectures 2006. Concurrent Systems Engineering Series, vol. 64, WoTUG-29.
IOS Press, Amsterdam, The Netherlands, 389–389. ISBN: 1-58603-671-8.

Welch, P. and Austin, P. 2010. Communicating Sequential Processes for Java (JCSP) Home
Page. Systems Research Group, University of Kent, www.cs.kent.ac.uk/projects/ofa/jcsp.

Welch, P. and Barnes, F. 2005a. Communicating Mobile Processes: introducing occam-π. In
25 Years of CSP, A. Abdallah, C. Jones, and J. Sanders, Eds. Lecture Notes in Computer
Science, vol. 3525. Springer Verlag, 175–210.

Welch, P. and Barnes, F. 2005b. Mobile Barriers for occam-π: Semantics, Implementation
and Application. In Communicating Process Architectures 2005, J. Broenink, H. Roebbers,
J. Sunter, P. Welch, and D. Wood, Eds. Concurrent Systems Engineering Series, vol. 63,
WoTUG-28. IOS Press, Amsterdam, The Netherlands, 289–316. ISBN: 1-58603-561-4.

Welch, P. and Barnes, F. 2008. A CSP Model for Mobile Channels. In Communicating
Process Architectures 2008. Concurrent Systems Engineering Series, vol. 66, WoTUG-31. IOS
Press, Amsterdam, The Netherlands, 17–33. ISBN: 978-1-58603-907-3.

Welch, P., Barnes, F., and Polack, F. 2006. Communicating Complex Systems. In Proceedings
of the 11th IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS-2006), M. Hinchey, Ed. IEEE, Stanford, California, 107–117. ISBN: 0-7695-2530-X.

Welch, P., Brown, N., Moores, J., Chalmers, K., and Sputh, B. 2007. Integrating and
Extending JCSP. In Communicating Process Architectures 2007, A. McEwan, S. Schneider,
W. Ifill, and P. Welch, Eds. Concurrent Systems Engineering Series, vol. 65, WoTUG-30. IOS
Press, Amsterdam, The Netherlands, 349–370. ISBN: 978-1-58603-767-3.

Wikipedia. 2007. Stealth Aircraft. http://en.wikipedia.org/wiki/Stealth aircraft.

Wood, D. and Welch, P. 1996. The Kent Retargetable occam Compiler. In Parallel Processing
Developments, B. O’Neill, Ed. Concurrent Systems Engineering Series, vol. 47, WoTUG-19.
IOS Press, Amsterdam, The Netherlands, 143–166. ISBN: 90-5199-261-0.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

36 · P. H. Welch and J. B. Pedersen

ACM Reference Format:
Welch, P. H. and Pedersen, J. B. 2010. Santa Claus: Formal analysis of a process-oriented
solution. ACM Trans. Program. Lang. Syst. 32, 4, Article 14 (April 2010), 37 pages.
DOI=10.1145/1734206.1734211 http:/doi.acm.org/10.1145/1734206.1734211

Received December 2008; Revised July 2009; accepted October 2009

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · App–1

This document is the online-only appendix to:

Santa Claus: Formal Analysis of a Process-Oriented Solution
PETER H. WELCH
University of Kent, Canterbury
and
JAN B. PEDERSEN
University of Nevada, Las Vegas

A. STATES AND REPORTS

The Santa Claus system has three kinds of component: Santa, reindeer and elf.
Their states are outlined below, along with the reports we require them to make
as they cycle through them. Most of these outline ‘states’ are a composite of
a short sequence of states. Some allow many alternative sequences (e.g. when
harnessing the reindeer, the order in which they are harnessed does not matter).
The reports are triggered by internal state changes – they signal their occurrence to
the system environment (which may be a machine controlled by these signals). The
state changes are triggered by event synchronisations between the system processes,
hidden from their environment. Those events are not specified here – their design,
together with any additional components deemed necessary, is an implementation
matter (Section 4).

—Santa
—States:

—Sleeping — wait to be woken up either by all the reindeer ready for harnessing
or a group of three elves wanting an audience;

—Delivering — harness all nine reindeer, deliver toys, unharness the reindeer,
back to sleep;

—Consulting — greet the elves party, consult with them, show them out, back
to sleep.

—Reports:
—who woke him up (reindeer or elves);
—harnessing each reindeer;
—start of delivery round;
—end of delivery round;
—unharnessing each reindeer;
—greeting each elf;
—start of consultancy session;

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2010 ACM 0164-0925/2010/0500-0001 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

App–2 · P. H. Welch and J. B. Pedersen

—end of consultancy session;
—showing each elf the door.

—Reindeer (nine of them)
—States:

—Vacationing – do nothing until bored, then go home;
—Waiting – wait for the other reindeer to come home, then approach Santa;
—Delivering – get harnessed, wait for the other reindeer to be harnessed,

deliver toys, get unharnessed, then back on holiday;
—Reports:

—start of vacation postcard;
—returning home email;
—start of toy delivery message;
—return from toy delivery.

—Elf (ten of them)
—States:

—Working – work until a problem (or new idea) arises, then go to see Santa;
—Waiting – wait for two other elves who also want to see Santa, approach

Santa as a group of three (this must be the only such group doing so);
—Consulting – greet Santa, wait for the other elves to greet Santa, consult

together, say goodbye to Santa, then back to work;
—Reports:

—starting work shift;
—when a work problem (or idea) occurs;
—consulting with Santa;
—consultancy session finished.

B. MESSAGE PROTOCOLS – OCCAM-π

The following declarations give the message structures for the reindeer, elf and
Santa reports used by the occam-π processes in Section 4.

PROTOCOL REINDEER.MSG

CASE

holiday; INT -- start of vacation postcard; reindeer id

deer.ready; INT -- back from vacation; reindeer id

deliver; INT -- start of toy delivery; reindeer id

deer.done; INT -- return from toy delivery; reindeer id

:

PROTOCOL ELF.MSG

CASE

working; INT -- start of work shift; elf id

elf.ready; INT -- want to consult Santa; elf id

consult; INT -- consulting; elf id

elf.done; INT -- end of consultation; elf id

:

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · App–3

PROTOCOL SANTA.MSG

CASE

reindeer.ready -- woken up by reindeer

harness; INT -- harnessing this reindeer; id

mush.mush -- start of toy delivery

woah -- end of toy delivery

unharness; INT -- unharnessing this reindeer; id

elves.ready -- woken up by party of elves

greet; INT -- greet this elf; id

consulting -- consulting with elves

santa.done -- end of consultation

goodbye; INT -- show elf the door; id

:

PROTOCOL MESSAGE EXTENDS REINDEER.MSG, ELF.MSG, SANTA.MSG:

C. EXTENDED PARTIAL BARRIER – OCCAM-π

The following code declares the occam-π process for an extended partial barrier, as
described in Section 4.2.2.

PROC xp.bar (VAL INT x, CHAN BOOL a?, b?, ping!)

WHILE TRUE

SEQ

SEQ i = 0 FOR x -- gather in the right number of offers

BOOL any:

a ? any

ping ! TRUE -- trigger some special process

-- (enough clients are ready)

SEQ i = 0 FOR x -- complete partial barrier

BOOL any: -- (let the clients go)

b ? any

:

D. CSP SCRIPTS

D.1 Santa Claus Events

First, we declare all the constants, types and events used by the system:

N_REINDEER = 9 -- number of reindeer

G_REINDEER = 9 -- number of reindeer needed to meet Santa

N_ELVES = 10 -- number of elves

G_ELVES = 3 -- number of elves needed to meet Santa

nametype R_set = {0..(N_REINDEER - 1)} -- reindeer ids

nametype E_set = {0..(N_ELVES - 1)} -- elf ids

datatype ReportTag =

holiday | deerReady | deliver | deerDone | -- reindeer reports

working | elfReady | elfWaiting | -- elf reports

consult | elfDone | -- (more of above)

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

App–4 · P. H. Welch and J. B. Pedersen

allReindeer | harness | mushMush | -- santa’s reindeer reports

woah | unharness | -- (more of above)

threeElves | greet | consulting | -- santa’s elf reports

done | goodbye -- (more of above)

channel report : ReportTag.E_set -- report.id

-- (E_set includes R_set)

channel reindeer_2_santa : R_set -- reindeer id

channel reindeer_2_santa_ack

channel elves_2_santa : E_set -- elf id

channel elves_2_santa_ack

channel just_elves_a, just_elves_b -- extended partial barrier

channel just_elves_ping -- (extension channel)

channel santa_elves_a, santa_elves_b -- partial barrier

channel just_reindeer, santa_reindeer -- barriers

D.2 Partial Barriers

Like occam-π, CSP has no primitives for partial barriers and we have to model
them using processes and events. Here is the regular partial barrier process, again
binding in the specific events for this system. It directly follows the occam-π code
given in Section 4.2.1:

P_BAR (n) =

(; x:<1..n> @ (santa_elves_a -> SKIP)) ;

(; x:<1..n> @ (santa_elves_b -> SKIP)) ; P_BAR (n)

Note: the syntax (; x:<1..n> @ P(x)) indicates a replicated sequence. It means:
P(1); P(2); ... ; P(n).

The following CSP expression corresponds to the xp.bar occam-π process de-
scribed in Section 4.2.2 (and shown in Appendix C):

XP_BAR (n) =

(; x:<1..n> @ (just_elves_a -> SKIP)) ;

just_elves_ping ->

(; x:<1..n> @ (just_elves_b -> SKIP)) ; XP_BAR (n)

D.3 Reindeer

We define the reindeer process directly from the occam-π declaration in Section 4.1:

REINDEER (id) =

report ! holiday.id -> RANDOM_TIMEOUT (HOLIDAY_TIME) ;

report ! deerReady.id -> just_reindeer ->

reindeer_2_santa ! id -> santa_reindeer ->

report ! deliver.id -> santa_reindeer ->

report ! deerDone.id -> reindeer_2_santa ! id ->

reindeer_2_santa_ack -> REINDEER (id)

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · App–5

D.4 The Santa Claus System

We build this up a few processes at a time. From Figure 2, we see that the reindeer
interleave on the report and reindeer 2 santa channels, but must synchronise
on the just reindeer and santa reindeer barriers. To express this, simply omit
report and reindeer 2 santa from the synchronisation set of the parallel opera-
tor5:
ALL_REINDEER =

([| {just_reindeer, santa_reindeer} |] id:R_set @ REINDEER (id))

\ {just_reindeer}

Note: the just reindeer event is hidden in the above, since it is a matter of
concern only to the reindeer.

With the partial barriers represented by the shared channels and processes of
Figure 6, the elf processes do not synchronise directly with each other at all – they
interleave on all their channels:
ALL_ELVES = ||| id:E_set @ ELF (id)

In CSP (and occam-π), concurrency is associative and commutative – so, it does
not matter in which order we construct the full system. Following Figure 6, we
combine the elves with their extended partial barrier process:
XP_ELVES =

(ALL_ELVES [| {just_elves_a, just_elves_b} |] XP_BAR (G_ELVES))

\ {just_elves_a, just_elves_b}

and add in Santa:
SANTA_XP_ELVES =

(SANTA

[| {| just_elves_ping, elves_2_santa, elves_2_santa_ack |} |]

XP_ELVES

) \ {| just_elves_ping, elves_2_santa, elves_2_santa_ack |}

and add in the (non-extended) partial barrier:
SANTA_XP_P_ELVES =

(SANTA_XP_ELVES

[| {santa_elves_a, santa_elves_b} |]

P_BAR (G_ELVES + 1)

) \ {santa_elves_a, santa_elves_b}

Finally, we have the whole system:
SYSTEM =

(SANTA_XP_P_ELVES

[| {| santa_reindeer, reindeer_2_santa, reindeer_2_santa_ack |} |]

ALL_REINDEER

) \ {| santa_reindeer, reindeer_2_santa, reindeer_2_santa_ack |}

Note that all events are now hidden except for the report channel.

5The CSP parallel operator used here consists of a synchronisation set of events embedded between
the symbols [| and |]. Operand processes cannot engage in events from that set independently
– all must engage for the event to happen. If the curly brackets of the synchronisation set also
include bars (i.e., {| and |}), the set contains all the messages carried by the channels named.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

App–6 · P. H. Welch and J. B. Pedersen

E. BACK TO OCCAM-π

Sections 6.1, 6.2 and 6.3 modify the CSP formalisms for our Santa Claus system
derived from the occam-π executable code presented is Section 4. These modifica-
tions address additional event ordering rules on additional reports providing more
detailed information on the behaviour of the system. The modifications were ver-
ified for correctness and deadlock and livelock freedom. They need to be turned
back into executable code – a process that is, and has to be, trivial:

—a waiting.room process replaces the extended partial barrier xp.bar – this cor-
responds to the CSP process WR (Section 6.3);

—this waiting.room needs an extra acknowledge channel for just_elves_a_ack
and uses it as specified by WR;

—the elf process also needs to be modified to synchronise on this acknowledgement
– as specified by the CSP process ELF (Section 6.2);

—the waiting.room also needs to perform the second synchronisation needed on
its ping channel at the end of its cycle;

—the santa process accepts this second ping after making its welcome report and
greeting the elf consulting group – as specified by SANTA (Section 6.3).

Here is the waiting room (modified from xp.bar is Section 4.2.2, following WR
from Section 6.3):

PROC waiting.room (VAL INT x, CHAN BOOL a?, a.ack?, b?, ping!)

WHILE TRUE

SEQ

SEQ i = 0 FOR x -- gather in the right number of elves

BOOL any:

SEQ

a ? any -- let an elf in

a.ack ? any -- wait for the elf to report its entry

ping ! TRUE -- try to wake up Santa

-- (enough elves are here)

SEQ i = 0 FOR x -- let the elves leave the waiting room

BOOL any:

b ? any

ping ! TRUE -- wait for Santa to greet all the elves

:

The elf process needs the extra acknowledgement channel for its interaction with
the waiting room. This interaction is more than the partial barrier protocol pre-
viously employed (the double output implemented by the sync process). These
outputs must now sandwich the report (that the elf is in the waiting room) and
the acknowledgement. The changes are coded in-line below (modified from elf in
Section 4.2.3 and following ELF from Section 6.2):

PROC elf (VAL INT id,

SHARED CHAN BOOL just.elves.a!, just.elves.a.ack!, just.elves.b!,

SHARED CHAN BOOL santa.elves.a!, santa.elves.b!,

SHARED CHAN INT to.santa!,

SHARED CHAN ELF.MSG report!)

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · App–7

WHILE TRUE

SEQ

...

CLAIM report ! elf.ready; id -- "I want to see Santa" + id

CLAIM just.elves.a ! TRUE -- let me into the waiting room

CLAIM report ! waiting; id -- "I’m in the waiting room" + id

CLAIM just.elves.a.ack ! TRUE -- you can let someone else in now

CLAIM just.elves.b ! TRUE -- wait for enough elves to gather

CLAIM to.santa ! id -- say hello to Santa

...

:

Finally, Santa needs to accept the second ping from the waiting room. We modify
santa from Section 4.2.3, following SANTA from Section 6.3:

{{{ deal with the elves

BOOL any:

just.elves.ping ? any -- a party of elves is at the door

SEQ

CLAIM report ! elves.ready -- "Ho, Ho, Ho, some elves are here"

SEQ i = 0 FOR G.ELVES -- for each elf in the consult party

INT id: -- (G.ELVES is size of party)

SEQ

from.elves ? id -- receive elf id

CLAIM report ! greet; id -- "Hello elf " + id

just.elves.ping ? any -- tell waiting room all have arrived

CLAIM report ! consulting -- "Consulting with elves"

...

}}}

F. A SIMPLER SANTA CLAUS

For completeness and comparison reasons, we have included the occam-π version of
the program that generates the same output as the Peyton Jones’ implementation
(in Haskell using Software Transactions [Jones 2007]). As described in Section 7.1,
the latter solution has only four external signals: reindeer delivering toys, elves
consulting with Santa, Santa being woken by all the reindeer, and Santa being
woken by a group of three elves.

PROC reindeer (VAL INT id, BARRIER just.reindeer, santa.reindeer,

SHARED CHAN INT to.santa!,

SHARED CHAN REINDEER.MSG report!)

WHILE TRUE

SEQ

random.wait (HOLIDAY.TIME) -- sleep for a random amount of time

SYNC just.reindeer -- wait for all deer to return

CLAIM to.santa ! id -- send id to Santa (to get harnessed)

CLAIM report ! deliver; id -- "I’m delivering toys" + id

SYNC santa.reindeer -- until Santa takes us all home

:

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

App–8 · P. H. Welch and J. B. Pedersen

PROC elf (VAL INT id,

SHARED CHAN BOOL just.elves.a!, just.elves.b!,

SHARED CHAN BOOL santa.elves.a!, santa.elves.b!,

SHARED CHAN INT to.santa!, SHARED CHAN ELF.MSG report!)

WHILE TRUE

SEQ

random.wait (WORKING.TIME) -- work until I have a problem

sync (just.elves.a, just.elves.b) -- wait for two other elves

CLAIM to.santa ! id -- say hello to Santa

CLAIM report ! consult; id -- "I’m consulting Santa" + id

sync (santa.elves.a, santa.elves.b) -- until Santa has had enough

:

PROC santa (CHAN INT from.reindeer?, BARRIER santa.reindeer,

CHAN BOOL just.elves.ping?, CHAN INT from.elves?,

SHARED CHAN BOOL santa.elves.a!, santa.elves.b!,

SHARED CHAN SANTA.MSG report!)

WHILE TRUE

PRI ALT

INT id:

from.reindeer ?? id -- the first reindeer is here

CLAIM report ! reindeer.ready -- "Ho, Ho, Ho, reindeer are here"

SEQ -- (extended input has finished)

SEQ i = 0 FOR N.REINDEER - 1 -- for each remaining deer

from.reindeer ? id -- receive deer id

random.wait (DELIVERY.TIME) -- deliver toys for a random time

SYNC santa.reindeer -- signal everyone to return home

BOOL any:

just.elves.ping ? any -- a party of elves is at door

SEQ

CLAIM report ! elves.ready -- "Ho, Ho, Ho, elves are here"

SEQ i = 0 FOR G.ELVES -- for each elf in the party

INT id:

from.elves ? id -- receive elf id

random.wait (CONSULTATION.TIME) -- consult for a random time

sync (santa.elves.a, santa.elves.b) -- consultancy is over

:

Only processes different from those presented previously are listed above. The
processes managing the partial barriers, p.bar, xp.bar and sync are as defined in
Sections 4.2.1 and on-line Appendix C. The whole system, santa.system, remains
as defined in Section 4.3.

G. PRIORITISED CHOICE

There is one aspect of our solution that we have not verified: Santa’s prioritisation
of the reindeer wake-up signal over that from a group of elves. The implementation
is direct and trivial, using the PRI ALT construct of occam-π (Sections 3.4 and 4.1).
Our CSP formalisation maps this to a plain external choice (Section 5.3). CSP
does not address priorities, so we have no direct way to express this part of the
specification formally.
ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · App–9

We can, however, express it indirectly, using an event-ordering observer as before.
This observer takes note only of the reindeer reports saying they are back from
holiday and Santa’s “Ho, Ho, Ho ...” messages greeting either the reindeer or the
elves party. The observer keeps a count of reindeer reports, clearing this to zero
upon the relevant Santa greeting. If Santa greets an elves party when the reindeer
count is nine, the observer refuses all further signals, provoking system deadlock.

However, were we to do this, the model check would show the potential for
deadlock – that is, our system does not honour the rule:

Santa never says “Ho Ho Ho ... some elves are here” if all nine reindeer
have reported they are back from holiday and Santa has not since said
“Ho Ho Ho ... Some reindeer are here”.

This rule, however, is different from the rule actually required, which is that
Santa gives priority to the reindeer wake-up signal (and is honoured).

There is a difference between the back-from-holiday reports from the reindeer
and the wake-up signal to Santa: the former precede the latter! When the ninth
reindeer reports the end of her holiday, the signal to Santa will certainly be made
... but the offer of that signal follows that last report and is not atomic with it.
In fact, there is even a barrier synchronisation of all the reindeer in between them
– though that is not relevant. What is relevant is that a group of three elves may
signal Santa following the ninth back-from-holiday reindeer report and that Santa
can quite properly accept that elves signal (since the reindeer signal has not yet
been offered). These circumstances are rare, but we have observed them when
running the occam-π code.

Whenever Santa actually has a choice of wake-up signals, the occam-π system
will ensure Santa makes the right choice. These circumstances are quite common:
we only need a long consultancy with one party of elves, during which another
party assembles and all the reindeer return. Our solution honours the informal
requirement regarding prioritised choice but we have no way (in CSP) to formalise
and, hence, verify it.

If we want to honour the above event-ordering rule instead, of course we can. We
need a priority managing process (PMP) to which Santa enquires for a decision as
to which wake-up signal to process (and sleeps until given an answer). The reindeer
and party of elves must register with PMP after their last member has arrived but
before reporting that arrival.

On the elves side, this is easily managed by the Waiting Room process. For the
reindeer, this is not so easy since the last reindeer back from holiday does not know
that she is the last! To manage this, simplest is to abandon the just.reindeer
barrier synchronisation and replace it with a (full) barrier process – similar to the
waiting room (perhaps it is their Stable).

The PMP must always service such registration without blocking. It can be a
simple server offering an external choice between an enquiry from Santa or regis-
tration from the reindeer or elves. No prioritisation or fairness is required for this
service.

If a Santa enquiry is outstanding when a registration comes in, Santa is simply
told to take the signal from the registering side (that will soon be made, following
a report that it is about to make it). Otherwise, the registration is just noted (and

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

App–10 · P. H. Welch and J. B. Pedersen

the registering side goes on to report that it is ready to signal and, then, offers its
signal to Santa – which, for now, will be blocked).

If no registrations have been made when Santa enquires, the enquiry is noted
(leaving Santa blocked waiting for a reply). If one registration exists when Santa
enquires, Santa is informed of the registering side and the registration is cleared.
If both registrations exist, Santa is told to accept the reindeer signal and that
registration is cleared.

Finally, Santa accepts the reply from the PMP with an extended rendezvous,
during which the wake-up signal (from the instructed side) is accepted and the
“Ho, Ho, Ho” greeting is reported. This prevents the PMP from accepting a further
registration (which would trigger a report of an impending signal) before Santa’s
report of its decision has been made.

The PMP logic is easier to express in occam-π or CSP. The modifications to
the rest of the system (to replace the just.reindeer barrier with a Stable process
and simple changes to the Waiting Room logic to register with the PMP when the
third elf arrives and before it reports that arrival), the PMP itself, the observer
process checking the rule given in this section and the model checking to verify the
rule are omitted for reasons of space. However, all are straightforward and available
from the website www.santaclausproblem.net (along with all occam-π codes and CSP
scripts in this paper).

H. A UNIFIED OCCAM-π MODEL CHECKER

Building CSP models automatically from occam-π is tractable. (Even the mobile
channels, barriers and processes of occam-π, though not used here, have an opera-
tional semantics in terms of standard CSP [Welch and Barnes 2005b; 2008].) For
producing scripts that do not generate unnecessarily large state spaces when model
checking, a transformation tool allowing programmer interaction (to roll states to-
gether, carefully introduce non-determinism) would be helpful – although that was
not needed for this Santa Claus system.

Building efficient executables automatically from CSP implementation scripts
(i.e., those with internal choices resolved) is a little harder – especially if the full
range of CSP expression (e.g. external choice over multiway synchronisations [Welch
et al. 2006; Welch 2006], complex choice preconditions on channel message values)
is allowed.

Either way, being able to translate automatically between these two formalisms
unifies verification with the development of efficiently executable programs – one
of the grand challenges in Computer Science. We look forward to developments in
both these areas.

I. MOBILE CHANNELS AND PROCESSES

In the solution analysed in the paper, network topology is static – all processes
have all their channels available all the time. Some care has to be taken not to use
channels when inappropriate (e.g. a reindeer may try to communicate with Santa
while on vacation). With occam-π mobiles, we can arrange that processes simply
do not have those channels until they get into the right state – and not having
such channels means that their misuse cannot even be expressed! Of course, it
ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

Santa Claus: Formal Analysis of a Process-Oriented Solution · App–11

is a natural consequence of mobile system design that the arrivals of channels (or
barriers or processes) are the very events triggering their use.

In occam-π, we can construct channels at run-time and pass their ends indepen-
dently over existing channels to create new topology. For the Santa Claus problem,
moving a channel-end from an elf (or reindeer) through the waiting room (or stable)
and on to Santa, whilst retaining the other end, establishes a connection (between
elf and Santa, or reindeer and Santa) when, and only when, it is needed.

In occam-π, we can construct processes (to well-defined plugin templates) at run-
time, send and receive them through channels, plug them into local networks, fire
them up, stand them down and move them on again. We can model the reindeer
and elves as mobile processes that move through holiday resorts, stables, work
benches, waiting rooms, Santa’s Grotto and back again. All those destinations are
also processes though static ones. As the reindeer and elves arrive at each stage,
they plug in and do business.

We sense that these solutions are even more realistic and easy to design, program
and reason about, at least informally, than the static solutions expressed here.
Indeed, some of the careful extra synchronisations, added to the static network
solution presented here to prevent out-of-order external signalling, are not needed
(e.g. an elf only reports that it is in the waiting room when it is in the waiting room
and before it knocks on Santa’s door). Thus, the solutions become simpler.

For formal reasoning, an operational semantics maps occam-π mobile channels
and barriers down to CSP [Welch and Barnes 2005b; 2008]. We believe a similar
approach will yield an operational semantics for mobile processes in occam-π. More
recently, Roscoe has shown [Roscoe 2009] that CSP+ (which is CSP with the addi-
tion of an exception-throwing operator) can simulate a rich set of new capabilities,
including the mobility features of the π-calculus. This promises a direct traces-
failures-divergences semantics for occam-π, for which new model checkers may be
built with direct ability for reasoning about mobility.

We will leave these approaches for another time. However, occam-π solutions
employing them will be placed on www.santaclausproblem.net.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 14, April 2010.

